These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31751123)

  • 1. Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle.
    Klein WP; Thomsen RP; Turner KB; Walper SA; Vranish J; Kjems J; Ancona MG; Medintz IL
    ACS Nano; 2019 Dec; 13(12):13677-13689. PubMed ID: 31751123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of multienzyme complexes on DNA nanostructures.
    Fu J; Yang YR; Dhakal S; Zhao Z; Liu M; Zhang T; Walter NG; Yan H
    Nat Protoc; 2016 Nov; 11(11):2243-2273. PubMed ID: 27763626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self assembling nanoparticle enzyme clusters provide access to substrate channeling in multienzymatic cascades.
    Breger JC; Vranish JN; Oh E; Stewart MH; Susumu K; Lasarte-Aragonés G; Ellis GA; Walper SA; Díaz SA; Hooe SL; Klein WP; Thakur M; Ancona MG; Medintz IL
    Nat Commun; 2023 Mar; 14(1):1757. PubMed ID: 36990995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures.
    Ouyang Y; Zhang P; Willner I
    Bioconjug Chem; 2023 Jan; 34(1):51-69. PubMed ID: 35973134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold.
    Ke G; Liu M; Jiang S; Qi X; Yang YR; Wootten S; Zhang F; Zhu Z; Liu Y; Yang CJ; Yan H
    Angew Chem Int Ed Engl; 2016 Jun; 55(26):7483-6. PubMed ID: 27159899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid-based scaffold systems and application in enzyme cascade catalysis.
    Du C; Hu P; Ren L
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):9-23. PubMed ID: 36456728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami.
    Chen Y; Ke G; Ma Y; Zhu Z; Liu M; Liu Y; Yan H; Yang CJ
    J Am Chem Soc; 2018 Jul; 140(28):8990-8996. PubMed ID: 29927576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleic-Acid-Templated Enzyme Cascades.
    Rajendran A; Nakata E; Nakano S; Morii T
    Chembiochem; 2017 Apr; 18(8):696-716. PubMed ID: 28150909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates.
    Vranish JN; Ancona MG; Oh E; Susumu K; Lasarte Aragonés G; Breger JC; Walper SA; Medintz IL
    ACS Nano; 2018 Aug; 12(8):7911-7926. PubMed ID: 30044604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment.
    Elcock AH; Huber GA; McCammon JA
    Biochemistry; 1997 Dec; 36(51):16049-58. PubMed ID: 9405038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Enzyme Cascade Activity by Local Substrate Enrichment and Exclusion on DNA Nanostructures.
    Wang Z; St Iago-Mcrae E; Ebrahimimojarad A; Won Oh S; Fu J
    Langmuir; 2022 Oct; 38(41):12594-12601. PubMed ID: 36194827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration.
    Roberts CC; Chang CE
    J Chem Theory Comput; 2015 Jan; 11(1):286-92. PubMed ID: 26574226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Enzyme Assembly on T4 Phage Scaffold.
    Liu JL; Zabetakis D; Breger JC; Anderson GP; Goldman ER
    Front Bioeng Biotechnol; 2020; 8():571. PubMed ID: 32671028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Multienzyme Nanostructures on Synthetic Protein Scaffolds.
    Liu Z; Cao S; Liu M; Kang W; Xia J
    ACS Nano; 2019 Oct; 13(10):11343-11352. PubMed ID: 31498583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds.
    Chen X; Wang Q; Peng J; Long Q; Yu H; Li Z
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24344-24348. PubMed ID: 29989388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microenvironmental effects can masquerade as substrate channelling in cascade biocatalysis.
    Abdallah W; Hong X; Banta S; Wheeldon I
    Curr Opin Biotechnol; 2022 Feb; 73():233-239. PubMed ID: 34521036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade.
    Zhang Y; Tsitkov S; Hess H
    Nat Commun; 2016 Dec; 7():13982. PubMed ID: 28004753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations.
    Roberts CC; Chang CE
    J Phys Chem B; 2016 Aug; 120(33):8518-31. PubMed ID: 27248669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Efficiency of an Enzyme Cascade on DNA-Activated Silica Surfaces.
    Vogele K; List J; Simmel FC; Pirzer T
    Langmuir; 2018 Dec; 34(49):14780-14786. PubMed ID: 30462511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Guided Chemical Processes on Self-Assembled DNA Nanostructures.
    Wang ZG; Li N; Wang T; Ding B
    Langmuir; 2018 Dec; 34(49):14954-14962. PubMed ID: 29884022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.