These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31751246)

  • 1. ERINS: Novel Sequence Insertion Detection by Constructing an Extended Reference.
    Yuan X; Xu X; Zhao H; Duan J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1893-1901. PubMed ID: 31751246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SVSR: A Program to Simulate Structural Variations and Generate Sequencing Reads for Multiple Platforms.
    Yuan X; Gao M; Bai J; Duan J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):1082-1091. PubMed ID: 30334804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of indels in next-generation sequencing data.
    Ratan A; Olson TL; Loughran TP; Miller W
    BMC Bioinformatics; 2015 Feb; 16(1):42. PubMed ID: 25879703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and genotyping of novel sequence insertions in many sequenced individuals.
    Kavak P; Lin YY; Numanagic I; Asghari H; Güngör T; Alkan C; Hach F
    Bioinformatics; 2017 Jul; 33(14):i161-i169. PubMed ID: 28881988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genomic indels and structural variations using split reads.
    Zhang ZD; Du J; Lam H; Abyzov A; Urban AE; Snyder M; Gerstein M
    BMC Genomics; 2011 Jul; 12():375. PubMed ID: 21787423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SInC: an accurate and fast error-model based simulator for SNPs, Indels and CNVs coupled with a read generator for short-read sequence data.
    Pattnaik S; Gupta S; Rao AA; Panda B
    BMC Bioinformatics; 2014 Feb; 15():40. PubMed ID: 24495296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data.
    Kim BY; Park JH; Jo HY; Koo SK; Park MH
    PLoS One; 2017; 12(8):e0182272. PubMed ID: 28792971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ScanIndel: a hybrid framework for indel detection via gapped alignment, split reads and de novo assembly.
    Yang R; Nelson AC; Henzler C; Thyagarajan B; Silverstein KA
    Genome Med; 2015 Dec; 7():127. PubMed ID: 26643039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants.
    Jiang Y; Wang Y; Brudno M
    Bioinformatics; 2012 Oct; 28(20):2576-83. PubMed ID: 22851530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of indel calling tools using real short-read data.
    Hasan MS; Wu X; Zhang L
    Hum Genomics; 2015 Aug; 9(1):20. PubMed ID: 26286629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplicon Indel Hunter Is a Novel Bioinformatics Tool to Detect Large Somatic Insertion/Deletion Mutations in Amplicon-Based Next-Generation Sequencing Data.
    Kadri S; Zhen CJ; Wurst MN; Long BC; Jiang ZF; Wang YL; Furtado LV; Segal JP
    J Mol Diagn; 2015 Nov; 17(6):635-43. PubMed ID: 26319364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstrating the utility of flexible sequence queries against indexed short reads with FlexTyper.
    Richmond PA; Kaye AM; Kounkou GJ; Av-Shalom TV; Wasserman WW
    PLoS Comput Biol; 2021 Mar; 17(3):e1008815. PubMed ID: 33750951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The challenge of detecting indels in bacterial genomes from short-read sequencing data.
    Steglich M; Nübel U
    J Biotechnol; 2017 May; 250():11-15. PubMed ID: 28267569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next generation mapping reveals novel large genomic rearrangements in prostate cancer.
    Jaratlerdsiri W; Chan EKF; Petersen DC; Yang C; Croucher PI; Bornman MSR; Sheth P; Hayes VM
    Oncotarget; 2017 Apr; 8(14):23588-23602. PubMed ID: 28423598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Local Outlier Factor-Based Detection of Copy Number Variations From NGS Data.
    Yuan X; Li J; Bai J; Xi J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1811-1820. PubMed ID: 31880558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data.
    Zhang J; Wang J; Wu Y
    BMC Bioinformatics; 2012 Apr; 13 Suppl 6(Suppl 6):S6. PubMed ID: 22537045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iMGEins: detecting novel mobile genetic elements inserted in individual genomes.
    Bae J; Lee KW; Islam MN; Yim HS; Park H; Rho M
    BMC Genomics; 2018 Dec; 19(1):944. PubMed ID: 30563451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies.
    Yu T; Huang X; Dou S; Tang X; Luo S; Theurkauf WE; Lu J; Weng Z
    Nucleic Acids Res; 2021 May; 49(8):e44. PubMed ID: 33511407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak.
    Chen Y; Wang AY; Barkley CA; Zhang Y; Zhao X; Gao M; Edmonds MD; Chong Z
    Nat Commun; 2023 Jan; 14(1):283. PubMed ID: 36650186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis.
    Akogwu I; Wang N; Zhang C; Gong P
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):20. PubMed ID: 27461106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.