These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31751515)
1. Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform. Sun D; Cao F; Tian Y; Li A; Xu W; Chen Q; Shi W; Xu S Anal Chem; 2019 Dec; 91(24):15484-15490. PubMed ID: 31751515 [TBL] [Abstract][Full Text] [Related]
2. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772 [TBL] [Abstract][Full Text] [Related]
3. Ultrasensitive and Simultaneous Detection of Two Cytokines Secreted by Single Cell in Microfluidic Droplets via Magnetic-Field Amplified SERS. Sun D; Cao F; Xu W; Chen Q; Shi W; Xu S Anal Chem; 2019 Feb; 91(3):2551-2558. PubMed ID: 30624061 [TBL] [Abstract][Full Text] [Related]
4. Surface-enhanced Raman scattering-based sensing in vitro: facile and label-free detection of apoptotic cells at the single-cell level. Jiang X; Jiang Z; Xu T; Su S; Zhong Y; Peng F; Su Y; He Y Anal Chem; 2013 Mar; 85(5):2809-16. PubMed ID: 23373817 [TBL] [Abstract][Full Text] [Related]
5. A droplet-based microfluidic chip as a platform for leukemia cell lysate identification using surface-enhanced Raman scattering. Hassoun M; Rüger J; Kirchberger-Tolstik T; Schie IW; Henkel T; Weber K; Cialla-May D; Krafft C; Popp J Anal Bioanal Chem; 2018 Jan; 410(3):999-1006. PubMed ID: 28905087 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic fabrication of SERS-active microspheres for molecular detection. Hwang H; Kim SH; Yang SM Lab Chip; 2011 Jan; 11(1):87-92. PubMed ID: 20959939 [TBL] [Abstract][Full Text] [Related]
7. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems. Xie Y; Yang S; Mao Z; Li P; Zhao C; Cohick Z; Huang PH; Huang TJ ACS Nano; 2014 Dec; 8(12):12175-84. PubMed ID: 25402207 [TBL] [Abstract][Full Text] [Related]
8. Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres. Niu C; Zou B; Wang Y; Cheng L; Zheng H; Zhou S Langmuir; 2016 Jan; 32(3):858-63. PubMed ID: 26731200 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic Droplet-SERS Platform for Single-Cell Cytokine Analysis via a Cell Surface Bioconjugation Strategy. Cong L; Wang J; Li X; Tian Y; Xu S; Liang C; Xu W; Wang W; Xu S Anal Chem; 2022 Jul; 94(29):10375-10383. PubMed ID: 35815899 [TBL] [Abstract][Full Text] [Related]
11. Preparation of silver nanoparticles coated ZnO/Fe Alula MT; Lemmens P; Bo L; Wulferding D; Yang J; Spende H Anal Chim Acta; 2019 Sep; 1073():62-71. PubMed ID: 31146837 [TBL] [Abstract][Full Text] [Related]
12. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105 [TBL] [Abstract][Full Text] [Related]
13. Additional amplifications of SERS via an optofluidic CD-based platform. Choi D; Kang T; Cho H; Choi Y; Lee LP Lab Chip; 2009 Jan; 9(2):239-43. PubMed ID: 19107279 [TBL] [Abstract][Full Text] [Related]
14. A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device. Li B; Zhang W; Chen L; Lin B Electrophoresis; 2013 Aug; 34(15):2162-8. PubMed ID: 23712933 [TBL] [Abstract][Full Text] [Related]
15. Surface-Enhanced Raman Scattering for Label-Free Living Single Cell Analysis. Kuku G; Altunbek M; Culha M Anal Chem; 2017 Nov; 89(21):11160-11166. PubMed ID: 29023100 [TBL] [Abstract][Full Text] [Related]
17. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS). Guo H; Zhang Z; Xing B; Mukherjee A; Musante C; White JC; He L Environ Sci Technol; 2015 Apr; 49(7):4317-24. PubMed ID: 25775209 [TBL] [Abstract][Full Text] [Related]
18. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Gao R; Choi N; Chang SI; Kang SH; Song JM; Cho SI; Lim DW; Choo J Anal Chim Acta; 2010 Nov; 681(1-2):87-91. PubMed ID: 21035607 [TBL] [Abstract][Full Text] [Related]
19. Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction. Zheng C; Zhang L; Wang F; Cai Y; Du S; Zhang Z Talanta; 2018 Oct; 188():630-636. PubMed ID: 30029423 [TBL] [Abstract][Full Text] [Related]
20. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection. Potara M; Baia M; Farcau C; Astilean S Nanotechnology; 2012 Feb; 23(5):055501. PubMed ID: 22236478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]