These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 31751596)

  • 1. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells.
    Banan M
    J Biotechnol; 2020 Jan; 308():1-9. PubMed ID: 31751596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T
    Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing.
    Kumita W; Sato K; Suzuki Y; Kurotaki Y; Harada T; Zhou Y; Kishi N; Sato K; Aiba A; Sakakibara Y; Feng G; Okano H; Sasaki E
    Sci Rep; 2019 Sep; 9(1):12719. PubMed ID: 31481684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Transgenic Mice Using CRISPR /Cas9 Technology.
    El Marjou F; Jouhanneau C; Krndija D
    Methods Mol Biol; 2021; 2214():125-141. PubMed ID: 32944907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes.
    Dong H; Zheng J; Yu D; Wang B; Pan L
    J Microbiol Methods; 2019 Aug; 163():105655. PubMed ID: 31226337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing.
    Ma BX; Yang S; Lyu M; Wang YR; Chang LY; Han YF; Wang JG; Guo Y; Xu K
    Yi Chuan; 2024 Jun; 46(6):466-477. PubMed ID: 38886150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes.
    Chu VT; Weber T; Graf R; Sommermann T; Petsch K; Sack U; Volchkov P; Rajewsky K; Kühn R
    BMC Biotechnol; 2016 Jan; 16():4. PubMed ID: 26772810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryo-Based Large Fragment Knock-in in Mammals: Why, How and What's Next.
    Erwood S; Gu B
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32013077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome editing in the mammalian brain using the CRISPR-Cas system.
    Nishiyama J
    Neurosci Res; 2019 Apr; 141():4-12. PubMed ID: 30076877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII.
    Eghbalsaied S; Kues WA
    Sci Rep; 2023 Feb; 13(1):2690. PubMed ID: 36792645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing.
    Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A
    Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis.
    Kato S; Fukazawa T; Kubo T
    Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system.
    Yoshimatsu S; Okahara J; Sone T; Takeda Y; Nakamura M; Sasaki E; Kishi N; Shiozawa S; Okano H
    Sci Rep; 2019 Feb; 9(1):1528. PubMed ID: 30728412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient biallelic knock-in in mouse embryonic stem cells by in vivo-linearization of donor and transient inhibition of DNA polymerase θ/DNA-PK.
    Arai D; Nakao Y
    Sci Rep; 2021 Sep; 11(1):18132. PubMed ID: 34518609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in.
    Rezza A; Jacquet C; Le Pillouer A; Lafarguette F; Ruptier C; Billandon M; Isnard Petit P; Trouttet S; Thiam K; Fraichard A; Chérifi Y
    Sci Rep; 2019 Mar; 9(1):3486. PubMed ID: 30837594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing.
    Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H
    Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.