These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31751980)

  • 21. Octopus-inspired robotics. Preface.
    Mazzolai B; Laschi C
    Bioinspir Biomim; 2015 May; 10(3):030301. PubMed ID: 25970854
    [No Abstract]   [Full Text] [Related]  

  • 22. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Turtle mimetic soft robot with two swimming gaits.
    Song SH; Kim MS; Rodrigue H; Lee JY; Shim JE; Kim MC; Chu WS; Ahn SH
    Bioinspir Biomim; 2016 May; 11(3):036010. PubMed ID: 27145061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.
    Richards CT; Clemente CJ
    Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.
    Palagi S; Jager EW; Mazzolai B; Beccai L
    Bioinspir Biomim; 2013 Dec; 8(4):046004. PubMed ID: 24103844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-modal locomotion: from animal to application.
    Lock RJ; Burgess SC; Vaidyanathan R
    Bioinspir Biomim; 2014 Mar; 9(1):011001. PubMed ID: 24343102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro).
    Villanueva AA; Marut KJ; Michael T; Priya S
    Bioinspir Biomim; 2013 Dec; 8(4):046005. PubMed ID: 24166747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray.
    Asadnia M; Kottapalli AG; Haghighi R; Cloitre A; Alvarado PV; Miao J; Triantafyllou M
    Bioinspir Biomim; 2015 May; 10(3):036008. PubMed ID: 25984934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model.
    Clemente CJ; Richards C
    Bioinspir Biomim; 2012 Sep; 7(3):036018. PubMed ID: 22677569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Science, technology and the future of small autonomous drones.
    Floreano D; Wood RJ
    Nature; 2015 May; 521(7553):460-6. PubMed ID: 26017445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a biomimetic robotic fish and its control algorithm.
    Yu J; Tan M; Wang S; Chen E
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1798-810. PubMed ID: 15462446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensing the flow beneath the fins.
    Bora M; Kottapalli AGP; Miao J; Triantafyllou MS
    Bioinspir Biomim; 2018 Jan; 13(2):025002. PubMed ID: 29239859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects.
    Boyer F; Porez M
    Bioinspir Biomim; 2015 Mar; 10(2):025007. PubMed ID: 25811531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals.
    Polverino G; Abaid N; Kopman V; Macrì S; Porfiri M
    Bioinspir Biomim; 2012 Sep; 7(3):036019. PubMed ID: 22677608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A survey of snake-inspired robot designs.
    Hopkins JK; Spranklin BW; Gupta SK
    Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.