BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31752138)

  • 1.
    Tamene A; Baye K; Kariluoto S; Edelmann M; Bationo F; Leconte N; Humblot C
    Nutrients; 2019 Nov; 11(11):. PubMed ID: 31752138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cereal-based fermented foods as a source of folate and cobalamin: The role of endogenous microbiota.
    Ashagrie H; Baye K; Guibert B; Seyoum Y; Rochette I; Humblot C
    Food Res Int; 2023 Dec; 174(Pt 1):113625. PubMed ID: 37986477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains.
    Yépez A; Russo P; Spano G; Khomenko I; Biasioli F; Capozzi V; Aznar R
    Food Microbiol; 2019 Feb; 77():61-68. PubMed ID: 30297057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folate content of a staple food increased by fermentation of a cereal using selected folate-producing microorganisms.
    Tamene A; Baye K; Humblot C
    Heliyon; 2022 May; 8(5):e09526. PubMed ID: 35663756
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Oh YJ; Kim TS; Moon HW; Lee SY; Lee SY; Ji GE; Hwang KT
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33143293
    [No Abstract]   [Full Text] [Related]  

  • 6. Screening of folate-producing lactic acid bacteria and modulatory effects of folate-biofortified yogurt on gut dysbacteriosis of folate-deficient rats.
    Zhang J; Cai D; Yang M; Hao Y; Zhu Y; Chen Z; Aziz T; Sarwar A; Yang Z
    Food Funct; 2020 Jul; 11(7):6308-6318. PubMed ID: 32602881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acid fermentation as a tool for increasing the folate content of foods.
    Saubade F; Hemery YM; Guyot JP; Humblot C
    Crit Rev Food Sci Nutr; 2017 Dec; 57(18):3894-3910. PubMed ID: 27351520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability of
    Park DM; Bae JH; Kim MS; Kim H; Kang SD; Shim S; Lee D; Seo JH; Kang H; Han NS
    J Microbiol Biotechnol; 2019 Nov; 29(11):1729-1738. PubMed ID: 31635439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of lactic acid bacteria for their potential use as aromatic starters in fermented vegetables.
    Lorn D; Nguyen TK; Ho PH; Tan R; Licandro H; Waché Y
    Int J Food Microbiol; 2021 Jul; 350():109242. PubMed ID: 34044228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a Novel Potential Probiotic Lactobacillus plantarum FB003 Isolated from Salted-Fermented Shrimp and its Effect on Cholesterol Absorption by Regulation of NPC1L1 and PPARα.
    Le B; Yang SH
    Probiotics Antimicrob Proteins; 2019 Sep; 11(3):785-793. PubMed ID: 30229515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of backslopping on lactic acid bacteria diversity in tarhana fermentation.
    Özel B; Şimşek Ö; Settanni L; Erten H
    Int J Food Microbiol; 2020 Dec; 335():108886. PubMed ID: 32950916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu.
    Dawlal P; Brabet C; Thantsha MS; Buys EM
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Feb; 36(2):296-307. PubMed ID: 30676861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition and Origin of the Fermentation Microbiota of Mahewu, a Zimbabwean Fermented Cereal Beverage.
    Pswarayi F; Gänzle MG
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice.
    Carrizo SL; de Moreno de LeBlanc A; LeBlanc JG; Rollán GC
    Food Res Int; 2020 Jan; 127():108735. PubMed ID: 31882084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products.
    Russo P; Arena MP; Fiocco D; Capozzi V; Drider D; Spano G
    Int J Food Microbiol; 2017 Apr; 247():48-54. PubMed ID: 27240933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles.
    Mıdık F; Tokatlı M; Bağder Elmacı S; Özçelik F
    Arch Microbiol; 2020 May; 202(4):875-885. PubMed ID: 31894393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry.
    Milanović V; Osimani A; Garofalo C; Belleggia L; Maoloni A; Cardinali F; Mozzon M; Foligni R; Aquilanti L; Clementi F
    PLoS One; 2020; 15(7):e0236190. PubMed ID: 32702068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of
    Tamene A; Mekuriyaw T; Baye K
    Food Sci Nutr; 2023 Oct; 11(10):6213-6222. PubMed ID: 37823102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food.
    Greppi A; Saubade F; Botta C; Humblot C; Guyot JP; Cocolin L
    Food Microbiol; 2017 Apr; 62():169-177. PubMed ID: 27889145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of fermentation and other processing steps on the folate content of a traditional African cereal-based fermented food.
    Saubade F; Hemery YM; Rochette I; Guyot JP; Humblot C
    Int J Food Microbiol; 2018 Feb; 266():79-86. PubMed ID: 29179099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.