BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 31752169)

  • 21. Current Development of Glioblastoma Therapeutic Agents.
    Wang Z; Peet NP; Zhang P; Jiang Y; Rong L
    Mol Cancer Ther; 2021 Sep; 20(9):1521-1532. PubMed ID: 34172531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date.
    Bastien JI; McNeill KA; Fine HA
    Cancer; 2015 Feb; 121(4):502-16. PubMed ID: 25250735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NF-κB and STAT3 in glioblastoma: therapeutic targets coming of age.
    Gray GK; McFarland BC; Nozell SE; Benveniste EN
    Expert Rev Neurother; 2014 Nov; 14(11):1293-306. PubMed ID: 25262780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in histone deacetylase inhibitors in targeting glioblastoma stem cells.
    Reddy RG; Bhat UA; Chakravarty S; Kumar A
    Cancer Chemother Pharmacol; 2020 Aug; 86(2):165-179. PubMed ID: 32638092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A New Chalcone Derivative with Promising Antiproliferative and Anti-Invasion Activities in Glioblastoma Cells.
    Mendanha D; Vieira de Castro J; Moreira J; Costa BM; Cidade H; Pinto M; Ferreira H; Neves NM
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34205043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic aspects of chaperones/heat-shock proteins in neuro-oncology.
    Graner MW; Bigner DD
    Expert Rev Anticancer Ther; 2006 May; 6(5):679-95. PubMed ID: 16759160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel CXCR4 Inhibitor CPZ1344 Inhibits the Proliferation, Migration and Angiogenesis of Glioblastoma.
    Luo Z; Wang B; Chen Y; Liu H; Shi L
    Pathol Oncol Res; 2020 Oct; 26(4):2597-2604. PubMed ID: 32632898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of the Wnt Pathway to Defining Biology of Glioblastoma.
    Tompa M; Kalovits F; Nagy A; Kalman B
    Neuromolecular Med; 2018 Dec; 20(4):437-451. PubMed ID: 30259273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment.
    Yang S; Xiao H; Cao L
    Biomed Pharmacother; 2021 Oct; 142():112074. PubMed ID: 34426258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting the functional significance of HSP90AB1 and other heat shock proteins in countering glioblastomas and ependymomas using omics analysis and drug prediction using virtual screening.
    Sharma S; Kumar P
    Neuropeptides; 2023 Dec; 102():102383. PubMed ID: 37729687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets.
    Mao H; Lebrun DG; Yang J; Zhu VF; Li M
    Cancer Invest; 2012 Jan; 30(1):48-56. PubMed ID: 22236189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications.
    Papavassiliou KA; Papavassiliou AG
    Biochim Biophys Acta Rev Cancer; 2022 Jan; 1877(1):188667. PubMed ID: 34894431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A New Investigational Perspective for Purines Against Glioblastoma Invasiveness.
    Giuliani P; Zuccarini M; Carluccio M; Ziberi S; Di Iorio P; Caciagli F; Ciccarelli R
    Curr Drug Targets; 2018; 19(16):1871-1881. PubMed ID: 29484991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences.
    Graner MW; Cumming RI; Bigner DD
    J Neurosci; 2007 Oct; 27(42):11214-27. PubMed ID: 17942716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular signaling molecules as therapeutic targets in glioblastoma multiforme.
    Jagannathan J; Prevedello DM; Dumont AS; Laws ER
    Neurosurg Focus; 2006 Apr; 20(4):E8. PubMed ID: 16709039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Eph receptors as therapeutic targets in glioblastoma.
    Day BW; Stringer BW; Boyd AW
    Br J Cancer; 2014 Sep; 111(7):1255-61. PubMed ID: 25144626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting glioblastoma stem cells: cell surface markers.
    He J; Liu Y; Lubman DM
    Curr Med Chem; 2012; 19(35):6050-5. PubMed ID: 22963566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress Glioblastoma Tumor Growth.
    Lee J; Shin YJ; Lee K; Cho HJ; Sa JK; Lee SY; Kim SH; Lee J; Yoon Y; Nam DH
    Cancer Res Treat; 2018 Jul; 50(3):1009-1022. PubMed ID: 29129044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surfaceome Proteomic of Glioblastoma Revealed Potential Targets for Immunotherapy.
    Rose M; Cardon T; Aboulouard S; Hajjaji N; Kobeissy F; Duhamel M; Fournier I; Salzet M
    Front Immunol; 2021; 12():746168. PubMed ID: 34646273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo.
    Signore M; Pelacchi F; di Martino S; Runci D; Biffoni M; Giannetti S; Morgante L; De Majo M; Petricoin EF; Stancato L; Larocca LM; De Maria R; Pallini R; Ricci-Vitiani L
    Cell Death Dis; 2014 May; 5(5):e1223. PubMed ID: 24810059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.