These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome. Miljković F; Bajorath J J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884 [TBL] [Abstract][Full Text] [Related]
6. Promiscuous Ligands from Experimentally Determined Structures, Binding Conformations, and Protein Family-Dependent Interaction Hotspots. Gilberg E; Gütschow M; Bajorath J ACS Omega; 2019 Jan; 4(1):1729-1737. PubMed ID: 31459430 [TBL] [Abstract][Full Text] [Related]
7. Determining the Degree of Promiscuity of Extensively Assayed Compounds. Jasial S; Hu Y; Bajorath J PLoS One; 2016; 11(4):e0153873. PubMed ID: 27082988 [TBL] [Abstract][Full Text] [Related]
8. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology. Cerisier N; Petitjean M; Regad L; Bayard Q; Réau M; Badel A; Camproux AC Molecules; 2019 Jul; 24(14):. PubMed ID: 31295958 [TBL] [Abstract][Full Text] [Related]
10. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs. Hu Y; Bajorath J J Chem Inf Model; 2010 Dec; 50(12):2112-8. PubMed ID: 21070069 [TBL] [Abstract][Full Text] [Related]
11. X-ray-Structure-Based Identification of Compounds with Activity against Targets from Different Families and Generation of Templates for Multitarget Ligand Design. Gilberg E; Stumpfe D; Bajorath J ACS Omega; 2018 Jan; 3(1):106-111. PubMed ID: 30023769 [TBL] [Abstract][Full Text] [Related]
12. Computational polypharmacology analysis of the heat shock protein 90 interactome. Anighoro A; Stumpfe D; Heikamp K; Beebe K; Neckers LM; Bajorath J; Rastelli G J Chem Inf Model; 2015 Mar; 55(3):676-86. PubMed ID: 25686391 [TBL] [Abstract][Full Text] [Related]
13. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Reyes-Parada M; Iturriaga-Vasquez P Expert Opin Drug Discov; 2016 Oct; 11(10):969-81. PubMed ID: 27552487 [TBL] [Abstract][Full Text] [Related]
14. Quantifying the tendency of therapeutic target proteins to bind promiscuous or selective compounds. Hu Y; Bajorath J PLoS One; 2015; 10(5):e0126838. PubMed ID: 26000736 [TBL] [Abstract][Full Text] [Related]
15. Activity profile relationships between structurally similar promiscuous compounds. Hu Y; Bajorath J Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530 [TBL] [Abstract][Full Text] [Related]
16. Identification of Target Associations for Polypharmacology from Analysis of Crystallographic Ligands of the Protein Data Bank. Pinzi L; Rastelli G J Chem Inf Model; 2020 Jan; 60(1):372-390. PubMed ID: 31800237 [TBL] [Abstract][Full Text] [Related]
17. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology. Gilberg E; Jasial S; Stumpfe D; Dimova D; Bajorath J J Med Chem; 2016 Nov; 59(22):10285-10290. PubMed ID: 27809519 [TBL] [Abstract][Full Text] [Related]
18. Identifying and characterizing promiscuous targets: implications for virtual screening. Pérez-Nueno VI; Ritchie DW Expert Opin Drug Discov; 2012 Jan; 7(1):1-17. PubMed ID: 22468890 [TBL] [Abstract][Full Text] [Related]
19. How promiscuous are pharmaceutically relevant compounds? A data-driven assessment. Hu Y; Bajorath J AAPS J; 2013 Jan; 15(1):104-11. PubMed ID: 23090085 [TBL] [Abstract][Full Text] [Related]
20. Compound promiscuity: what can we learn from current data? Hu Y; Bajorath J Drug Discov Today; 2013 Jul; 18(13-14):644-50. PubMed ID: 23524195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]