These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31752266)

  • 1. Design and CFD Analysis of the Fluid Dynamic Sampling System of the "MicroMED" Optical Particle Counter.
    Mongelluzzo G; Esposito F; Cozzolino F; Franzese G; Ruggeri AC; Porto C; Molfese C; Scaccabarozzi D; Saggin B
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "MicroMED" Optical Particle Counter: From Design to Flight Model.
    Scaccabarozzi D; Saggin B; Somaschini R; Magni M; Valnegri P; Esposito F; Molfese C; Cozzolino F; Mongelluzzo G
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Method to Calculate the Angular Weighting Function for a Scattering Instrument: Application to a Dust Sensor on Mars.
    Santalices D; de Castro AJ; Briz S
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dust-concentration measurement based on Mie scattering of a laser beam.
    Yu X; Shi Y; Wang T; Sun X
    PLoS One; 2017; 12(8):e0181575. PubMed ID: 28767662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ExoMars Raman spectrometer and the identification of biogeological spectroscopic signatures using a flight-like prototype.
    Edwards HG; Hutchinson I; Ingley R
    Anal Bioanal Chem; 2012 Oct; 404(6-7):1723-31. PubMed ID: 22865011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.
    Raack J; Reiss D; Balme MR; Taj-Eddine K; Ori GG
    Astrobiology; 2018 Oct; 18(10):1305-1317. PubMed ID: 28422534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission.
    Veneranda M; Manrique-Martinez JA; Lopez-Reyes G; Medina J; Torre-Fdez I; Castro K; Madariaga JM; Lantz C; Poulet F; Krzesińska AM; Hellevang H; Werner SC; Rull F
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117360. PubMed ID: 31319272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars.
    Bazalgette Courrèges-Lacoste G; Ahlers B; Pérez FR
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1023-8. PubMed ID: 17466575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational fluid dynamic modeling of a medium-sized surface mine blasthole drill shroud.
    Zheng Y; Reed WR; Zhou L; Rider JP
    Min Eng; 2016 Nov; 68(11):43-49. PubMed ID: 27932851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Personal exposure to airborne dust and microorganisms in agricultural environments.
    Lee SA; Adhikari A; Grinshpun SA; McKay R; Shukla R; Reponen T
    J Occup Environ Hyg; 2006 Mar; 3(3):118-30. PubMed ID: 16484176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of suspended particulate volume concentration and far-infrared extinction coefficient with a laser-diffraction instrument.
    Gerber H
    Appl Opt; 1991 Nov; 30(33):4824-31. PubMed ID: 20717285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct approach to determine the size setting error and size resolution of an optical particle counter.
    Geisler M; Dirscherl K
    Rev Sci Instrum; 2020 Apr; 91(4):045105. PubMed ID: 32357743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An empirical model of human aspiration in low-velocity air using CFD investigations.
    Anthony TR; Anderson KR
    J Occup Environ Hyg; 2015; 12(4):245-55. PubMed ID: 25438035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling efficiency of modified 37-mm sampling cassettes using computational fluid dynamics.
    Anthony TR; Sleeth D; Volckens J
    J Occup Environ Hyg; 2016; 13(2):148-58. PubMed ID: 26513395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of dust sampling inlets in calm air.
    Breslin JA; Stein RL
    Am Ind Hyg Assoc J; 1975 Aug; 36(8):576-83. PubMed ID: 1227283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light scattering by the Martian dust analog, palagonite, modeled with ellipsoids.
    Merikallio S; Nousiainen T; Kahnert M; Harri AM
    Opt Express; 2013 Jul; 21(15):17972-85. PubMed ID: 23938669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept.
    Schlanstein PC; Hesselmann F; Jansen SV; Gemsa J; Kaufmann TA; Klaas M; Roggenkamp D; Schröder W; Schmitz-Rode T; Steinseifer U; Arens J
    Cardiovasc Eng Technol; 2015 Sep; 6(3):340-51. PubMed ID: 26577365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A portable optical particle counter system for measuring dust aerosols.
    Marple VA; Rubow KL
    Am Ind Hyg Assoc J; 1978 Mar; 39(3):210-8. PubMed ID: 645547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.