These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31752314)

  • 1. Tetrafluoroethylene-Propylene Elastomer for Fabrication of Microfluidic Organs-on-Chips Resistant to Drug Absorption.
    Sano E; Mori C; Matsuoka N; Ozaki Y; Yagi K; Wada A; Tashima K; Yamasaki S; Tanabe K; Yano K; Torisawa YS
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Tetrafluoroethylene-Propylene Elastomer-Based Microfluidic Devices for Drug Toxicity and Metabolism Studies.
    Sano E; Deguchi S; Matsuoka N; Tsuda M; Wang M; Kosugi K; Mori C; Yagi K; Wada A; Yamasaki S; Kawai T; Yodogawa M; Mizuguchi H; Nakazawa N; Yamashita F; Torisawa YS; Takayama K
    ACS Omega; 2021 Sep; 6(38):24859-24865. PubMed ID: 34604667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clear castable polyurethane elastomer for fabrication of microfluidic devices.
    Domansky K; Leslie DC; McKinney J; Fraser JP; Sliz JD; Hamkins-Indik T; Hamilton GA; Bahinski A; Ingber DE
    Lab Chip; 2013 Oct; 13(19):3956-64. PubMed ID: 23954953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usability of Polydimethylsiloxane-Based Microfluidic Devices in Pharmaceutical Research Using Human Hepatocytes.
    Deguchi S; Tsuda M; Kosugi K; Sakamoto A; Mimura N; Negoro R; Sano E; Nobe T; Maeda K; Kusuhara H; Mizuguchi H; Yamashita F; Torisawa YS; Takayama K
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3648-3657. PubMed ID: 34283567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular Microphysiological System for Modeling of Biologic Barrier Function.
    Ishahak M; Hill J; Amin Q; Wubker L; Hernandez A; Mitrofanova A; Sloan A; Fornoni A; Agarwal A
    Front Bioeng Biotechnol; 2020; 8():581163. PubMed ID: 33304889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices.
    McMillan AH; Thomée EK; Dellaquila A; Nassman H; Segura T; Lesher-Pérez SC
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32731570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-swelling hydrogel-based microfluidic chips.
    Shen C; Li Y; Wang Y; Meng Q
    Lab Chip; 2019 Dec; 19(23):3962-3973. PubMed ID: 31656966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Myeloma Cell Drug Responses Differ in Thermoplastic vs PDMS Microfluidic Devices.
    Moore TA; Brodersen P; Young EWK
    Anal Chem; 2017 Nov; 89(21):11391-11398. PubMed ID: 28972783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating drug concentrations in PDMS microfluidic organ chips.
    Grant J; Özkan A; Oh C; Mahajan G; Prantil-Baun R; Ingber DE
    Lab Chip; 2021 Sep; 21(18):3509-3519. PubMed ID: 34346471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method for production of hydrophilic, rigid, and sterilized multi-layer 3D integrated polydimethylsiloxane microfluidic chips.
    Oyama TG; Oyama K; Taguchi M
    Lab Chip; 2020 Jun; 20(13):2354-2363. PubMed ID: 32495806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology.
    Gokaltun A; Yarmush ML; Asatekin A; Usta OB
    Technology (Singap World Sci); 2017 Mar; 5(1):1-12. PubMed ID: 28695160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility Testing of UV-Curable Polydimethylsiloxane for Human Umbilical Vein Endothelial Cell Culture on-a-Chip.
    Gómez-Varela AI; Viña A; Bao-Varela C; Flores-Arias MT; Carnero B; González-Peteiro M; González-Juanatey JR; Álvarez E
    ACS Omega; 2024 Jul; 9(28):30281-30293. PubMed ID: 39035966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple and Low-Cost Method for Fabrication of Polydimethylsiloxane Microfludic Chips.
    Sun L; Zhang L; Yang X; Zhang B; Yin Z
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5635-5641. PubMed ID: 33980373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips.
    Kim J; An H; Seo Y; Jung Y; Lee JS; Choi N; Bong KW
    Biomicrofluidics; 2017 Mar; 11(2):024120. PubMed ID: 28469763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of PDMS and NOA Microfluidic Chips: Deformation, Roughness, Hydrophilicity and Flow Performance.
    Turcitu T; Armstrong CJK; Lee-Yow N; Salame M; Le AV; Fenech M
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylic-based culture plate format perfusion device to establish liver endothelial-epithelial interface.
    McDuffie D; Alver CG; Suthar B; Helm M; Oliver D; Burgess RA; Barr D; Thomas E; Agarwal A
    Lab Chip; 2023 Jun; 23(13):3106-3119. PubMed ID: 37313651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.