BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 31752425)

  • 1. Dissecting the Regulatory Network of Leaf Premature Senescence in Maize (
    Chai M; Guo Z; Shi X; Li Y; Tang J; Zhang Z
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31752425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcription factor ZmNAC126 accelerates leaf senescence downstream of the ethylene signalling pathway in maize.
    Yang Z; Wang C; Qiu K; Chen H; Li Z; Li X; Song J; Wang X; Gao J; Kuai B; Zhou X
    Plant Cell Environ; 2020 Sep; 43(9):2287-2300. PubMed ID: 32430911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.
    Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y
    PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rice DNA-Binding One Zinc Finger 24 (OsDOF24) Delays Leaf Senescence in a Jasmonate-Mediated Pathway.
    Shim Y; Kang K; An G; Paek NC
    Plant Cell Physiol; 2019 Sep; 60(9):2065-2076. PubMed ID: 31135055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and Transcriptome Analyses of Early Leaf Senescence for
    Li Z; Pan X; Guo X; Fan K; Lin W
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the gene of a maize leaf senescence mutant and understanding the senescence pathways by expression analysis.
    Gao Y; Shi X; Chang Y; Li Y; Xiong X; Liu H; Li M; Li W; Zhang X; Fu Z; Xue Y; Tang J
    Plant Cell Rep; 2023 Oct; 42(10):1651-1663. PubMed ID: 37498331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BrTCP7 Transcription Factor Is Associated with MeJA-Promoted Leaf Senescence by Activating the Expression of
    Xu YM; Xiao XM; Zeng ZX; Tan XL; Liu ZL; Chen JW; Su XG; Chen JY
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31416297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Analysis of a Premature Leaf Senescence Mutant of Common Wheat (Triticum aestivum L.).
    Zhang Q; Xia C; Zhang L; Dong C; Liu X; Kong X
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29534430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the maize transcription factor ZmVQ52 accelerates leaf senescence in Arabidopsis.
    Yu T; Lu X; Bai Y; Mei X; Guo Z; Liu C; Cai Y
    PLoS One; 2019; 14(8):e0221949. PubMed ID: 31469881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of maize sucrose non-fermenting-1-related protein kinase 1 genes, ZmSnRK1s, causes alteration in carbon metabolism and leaf senescence in Arabidopsis thaliana.
    Wang J; Guan H; Dong R; Liu C; Liu Q; Liu T; Wang L; He C
    Gene; 2019 Apr; 691():34-44. PubMed ID: 30594634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses.
    Manavella PA; Dezar CA; Bonaventure G; Baldwin IT; Chan RL
    Plant J; 2008 Nov; 56(3):376-88. PubMed ID: 18643970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A WRKY transcription factor, TaWRKY42-B, facilitates initiation of leaf senescence by promoting jasmonic acid biosynthesis.
    Zhao MM; Zhang XW; Liu YW; Li K; Tan Q; Zhou S; Wang G; Zhou CJ
    BMC Plant Biol; 2020 Sep; 20(1):444. PubMed ID: 32993508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional analyses of natural leaf senescence in maize.
    Zhang WY; Xu YC; Li WL; Yang L; Yue X; Zhang XS; Zhao XY
    PLoS One; 2014; 9(12):e115617. PubMed ID: 25532107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize.
    Sekhon RS; Childs KL; Santoro N; Foster CE; Buell CR; de Leon N; Kaeppler SM
    Plant Physiol; 2012 Aug; 159(4):1730-44. PubMed ID: 22732243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. W-box and G-box elements play important roles in early senescence of rice flag leaf.
    Liu L; Xu W; Hu X; Liu H; Lin Y
    Sci Rep; 2016 Feb; 6():20881. PubMed ID: 26864250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. microRNA-dependent gene regulatory networks in maize leaf senescence.
    Wu X; Ding D; Shi C; Xue Y; Zhang Z; Tang G; Tang J
    BMC Plant Biol; 2016 Mar; 16():73. PubMed ID: 27000050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence.
    He Y; Fukushige H; Hildebrand DF; Gan S
    Plant Physiol; 2002 Mar; 128(3):876-84. PubMed ID: 11891244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves.
    Parlitz S; Kunze R; Mueller-Roeber B; Balazadeh S
    J Plant Physiol; 2011 Aug; 168(12):1311-9. PubMed ID: 21377757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iTRAQ-Based Quantitative Proteomic Analysis Reveals Cold Responsive Proteins Involved in Leaf Senescence in Upland Cotton (Gossypium hirsutum L.).
    Zheng X; Fan S; Wei H; Tao C; Ma Q; Ma Q; Zhang S; Li H; Pang C; Yu S
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28926933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.