These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31752438)

  • 1. Monitoring of Low-Level Wind Shear by Ground-based 3D Lidar for Increased Flight Safety, Protection of Human Lives and Health.
    Nechaj P; Gaál L; Bartok J; Vorobyeva O; Gera M; Kelemen M; Polishchuk V
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine gust front structure observed by coherent Doppler lidar at Lanzhou Airport (103°49$^{\prime}$
    Han Y; Liu J; Sun D; Han F; Zhou A; Zhao R; Xue X; Chen T; Zhen F; Lu Y
    Appl Opt; 2020 Mar; 59(9):2686-2694. PubMed ID: 32225816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.
    Wang M; Wei W; Ruan Z; He Q; Ge R
    Environ Monit Assess; 2013 Jun; 185(6):4819-34. PubMed ID: 23099859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lidar algorithms and technique in 3D scanning for planetary boundary layer height and single-beam-single-pointing wind speed retrieval.
    Pantazis A; Papayannis A
    Appl Opt; 2019 Mar; 58(9):2284-2293. PubMed ID: 31044923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Visibility on the Opportunity to Perform Flight Operations with Various Categories of the Instrument Landing System.
    Kwasiborska A; Grabowski M; Sedláčková AN; Novák A
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge technique Doppler lidar wind measurements with high vertical resolution.
    Korb CL; Gentry BM; Li SX
    Appl Opt; 1997 Aug; 36(24):5976-83. PubMed ID: 18259439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretable ensemble imbalance learning strategies for the risk assessment of severe-low-level wind shear based on LiDAR and PIREPs.
    Khattak A; Chan PW; Chen F; Peng H
    Risk Anal; 2024 May; 44(5):1084-1102. PubMed ID: 37700727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A heuristic risk assessment technique for birdstrike management at airports.
    Allan J
    Risk Anal; 2006 Jun; 26(3):723-9. PubMed ID: 16834629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.
    Targ R; Steakley BC; Hawley JG; Ames LL; Forney P; Swanson D; Stone R; Otto RG; Zarifis V; Brockman P; Calloway RS; Klein SH; Robinson PA
    Appl Opt; 1996 Dec; 35(36):7117-27. PubMed ID: 21151317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing observed surface wind speed in the Hudson Bay and Labrador regions of Canada from an aviation perspective.
    Leung ACW; Gough WA; Butler KA; Mohsin T; Hewer MJ
    Int J Biometeorol; 2022 Feb; 66(2):411-425. PubMed ID: 33044643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind Gust Measurement Techniques-From Traditional Anemometry to New Possibilities.
    Suomi I; Vihma T
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter.
    Liu ZS; Wu D; Liu JT; Zhang KL; Chen WB; Song XQ; Hair JW; She CY
    Appl Opt; 2002 Nov; 41(33):7079-86. PubMed ID: 12463255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rates and causes of accidents for general aviation aircraft operating in a mountainous and high elevation terrain environment.
    Aguiar M; Stolzer A; Boyd DD
    Accid Anal Prev; 2017 Oct; 107():195-201. PubMed ID: 28532572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous wave synthetic low-coherence wind sensing Lidar: motionless measurement system with subsequent numerical range scanning.
    Brinkmeyer E; Waterholter T
    Opt Express; 2013 Jan; 21(2):1872-97. PubMed ID: 23389172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent lidar airborne windshear sensor: performance evaluation.
    Targ R; Kavaya MJ; Huffaker RM; Bowles RL
    Appl Opt; 1991 May; 30(15):2013-26. PubMed ID: 20700170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particulate matter pollution from aviation-related activity at a small airport of the Aegean Sea Insular Region.
    Psanis C; Triantafyllou E; Giamarelou M; Manousakas M; Eleftheriadis K; Biskos G
    Sci Total Environ; 2017 Oct; 596-597():187-193. PubMed ID: 28432908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation.
    Xia H; Sun D; Yang Y; Shen F; Dong J; Kobayashi T
    Appl Opt; 2007 Oct; 46(29):7120-31. PubMed ID: 17932519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wind Preview-Based Model Predictive Control of Multi-Rotor UAVs Using LiDAR.
    Mendez AP; Whidborne JF; Chen L
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of an Airborne Doppler Wind Lidar in Tropical Cyclones.
    Bucci LR; O'Handley C; Emmitt GD; Zhang JA; Ryan K; Atlas R
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.
    Pal S; Lee TR; Phelps S; De Wekker SFJ
    Sci Total Environ; 2014 Oct; 496():424-434. PubMed ID: 25105753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.