These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 31752674)

  • 41. High-throughput immunophenotypic characterization of bone marrow- and cord blood-derived mesenchymal stromal cells reveals common and differentially expressed markers: identification of angiotensin-converting enzyme (CD143) as a marker differentially expressed between adult and perinatal tissue sources.
    Amati E; Perbellini O; Rotta G; Bernardi M; Chieregato K; Sella S; Rodeghiero F; Ruggeri M; Astori G
    Stem Cell Res Ther; 2018 Jan; 9(1):10. PubMed ID: 29338788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures.
    Nadeau S; Cheng A; Colmegna I; Rodier F
    Methods Mol Biol; 2019; 2045():93-105. PubMed ID: 31020633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of mesenchymal stromal cells (MSCs) from human adenoid tissue.
    Lee YS; Lee JE; Park HY; Lim YS; Lee JC; Wang SG; Lee BJ
    Cell Physiol Biochem; 2013; 31(4-5):513-24. PubMed ID: 23572135
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synovium-Derived and Bone-Derived Mesenchymal Stem/Stromal Cells from Early OA Patients Show Comparable In Vitro Properties to Those of Non-OA Patients.
    Zupan J; Stražar K
    Cells; 2024 Jul; 13(15):. PubMed ID: 39120270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord.
    Lim J; Razi ZR; Law J; Nawi AM; Idrus RB; Ng MH
    Cytotherapy; 2016 Dec; 18(12):1493-1502. PubMed ID: 27727016
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human Platelet Lysate Sustains the Osteogenic/Adipogenic Differentiation Potential of Adipose-Derived Mesenchymal Stromal Cells and Maintains Their DNA Integrity in vitro.
    Shansky YD; Sergeeva NS; Sviridova IK; Karalkin PA; Kirsanova VA; Akhmedova SA; Fomicheva KA; Shkurnikov MY; Portyannikova AY; Kaprin AD
    Cells Tissues Organs; 2019; 207(3-4):149-164. PubMed ID: 31593940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thy-1: more than a marker for mesenchymal stromal cells.
    Saalbach A; Anderegg U
    FASEB J; 2019 Jun; 33(6):6689-6696. PubMed ID: 30811954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Culture, Expansion and Differentiation of Human Bone Marrow Stromal Cells.
    Bisio V; Espéli M; Balabanian K; Anginot A
    Methods Mol Biol; 2021; 2308():3-20. PubMed ID: 34057710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum.
    Kisiel AH; McDuffee LA; Masaoud E; Bailey TR; Esparza Gonzalez BP; Nino-Fong R
    Am J Vet Res; 2012 Aug; 73(8):1305-17. PubMed ID: 22849692
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy metabolic capacities of human adipose-derived mesenchymal stromal cells in vitro and their adaptations in osteogenic and adipogenic differentiation.
    Meyer J; Salamon A; Mispagel S; Kamp G; Peters K
    Exp Cell Res; 2018 Sep; 370(2):632-642. PubMed ID: 30036541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Canine Mesenchymal Stem Cell Potential and the Importance of Dog Breed: Implication for Cell-Based Therapies.
    Bertolo A; Steffen F; Malonzo-Marty C; Stoyanov J
    Cell Transplant; 2015; 24(10):1969-80. PubMed ID: 25375819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. IL-17A and TNF Modulate Normal Human Spinal Entheseal Bone and Soft Tissue Mesenchymal Stem Cell Osteogenesis, Adipogenesis, and Stromal Function.
    Russell T; Watad A; Bridgewood C; Rowe H; Khan A; Rao A; Loughenbury P; Millner P; Dunsmuir R; Cuthbert R; Altaie A; Jones E; McGonagle D
    Cells; 2021 Feb; 10(2):. PubMed ID: 33562025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Far-Infrared Irradiation Inhibits Adipogenic Differentiation and Stimulates Osteogenic Differentiation of Human Tonsil-Derived Mesenchymal Stem Cells: Role of Protein Phosphatase 2B.
    Kim HY; Yu Y; Oh SY; Wang KK; Kim YR; Jung SC; Kim HS; Jo I
    Cell Physiol Biochem; 2019; 52(2):240-253. PubMed ID: 30816672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impaired osteogenesis of T1DM bone marrow-derived stromal cells and periosteum-derived cells and their differential in-vitro responses to growth factor rescue.
    Filion TM; Skelly JD; Huang H; Greiner DL; Ayers DC; Song J
    Stem Cell Res Ther; 2017 Mar; 8(1):65. PubMed ID: 28283030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adipose-Derived Stem/Stromal Cells Recapitulate Aging Biomarkers and Show Reduced Stem Cell Plasticity Affecting Their Adipogenic Differentiation Capacity.
    Jung JS; Volk C; Marga C; Navarrete Santos A; Jung M; Rujescu D; Navarrete Santos A
    Cell Reprogram; 2019 Aug; 21(4):187-199. PubMed ID: 31298565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells.
    Pilz GA; Ulrich C; Ruh M; Abele H; Schäfer R; Kluba T; Bühring HJ; Rolauffs B; Aicher WK
    Stem Cells Dev; 2011 Apr; 20(4):635-46. PubMed ID: 21047215
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells.
    Boland GM; Perkins G; Hall DJ; Tuan RS
    J Cell Biochem; 2004 Dec; 93(6):1210-30. PubMed ID: 15486964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells.
    Liu Y; Li Y; Nan LP; Wang F; Zhou SF; Wang JC; Feng XM; Zhang L
    Cell Biochem Funct; 2020 Mar; 38(2):130-140. PubMed ID: 31957071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of miR-34a reduces cellular senescence in human adipose tissue-derived mesenchymal stem cells through the activation of SIRT1.
    Mokhberian N; Bolandi Z; Eftekhary M; Hashemi SM; Jajarmi V; Sharifi K; Ghanbarian H
    Life Sci; 2020 Sep; 257():118055. PubMed ID: 32634429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.