These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3175298)

  • 1. Correlation between polymerase beta activity and thermal radiosensitization in Chinese hamster ovary cells.
    Dikomey E; Jung H
    Recent Results Cancer Res; 1988; 109():35-41. PubMed ID: 3175298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cycloheximide on heat-induced cell killing, radiosensitization, and loss of cellular DNA polymerase activities in Chinese hamster ovary cells.
    Chu GL; Dewey WC
    Radiat Res; 1987 Dec; 112(3):575-80. PubMed ID: 3423222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between thermal radiosensitization and heat-induced loss of DNA polymerase beta activity in CHO cells.
    Dikomey E; Jung H
    Int J Radiat Biol; 1993 Feb; 63(2):215-21. PubMed ID: 8094418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glycerol and low pH on heat-induced cell killing and loss of cellular DNA polymerase activities in Chinese hamster ovary cells.
    Mivechi NF; Dewey WC
    Radiat Res; 1984 Aug; 99(2):352-62. PubMed ID: 6540462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of hyperthermia radiosensitization and DNA polymerase inactivation in human normal and melanoma cell lines of different radiosensitivities.
    Raaphorst GP; Mao JP; Yang DP; Ng CE
    Radiat Oncol Investig; 1997; 5(1):1-7. PubMed ID: 9303050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strand break repair, DNA polymerase activity and heat radiosensitization in thermotolerant cells.
    Jorritsma JB; Kampinga HH; Scaf AH; Konings AW
    Int J Hyperthermia; 1985; 1(2):131-45. PubMed ID: 3836266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the enhancement of radiation sensitivity and DNA polymerase inactivation by hyperthermia in human glioma cells.
    Raaphorst GP; Feeley MM; Chu GL; Dewey WC
    Radiat Res; 1993 Jun; 134(3):331-6. PubMed ID: 8316626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase alpha and beta activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells.
    Mivechi NF; Dewey WC
    Radiat Res; 1985 Sep; 103(3):337-50. PubMed ID: 4041063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal radiosensitization in two pairs of CHO wild-type and radiation-sensitive mutant cell lines.
    Raaphorst GP; Thakar M; Ng CE
    Int J Hyperthermia; 1993; 9(3):383-91. PubMed ID: 8515141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments.
    Jorritsma JB; Burgman P; Kampinga HH; Konings AW
    Radiat Res; 1986 Mar; 105(3):307-19. PubMed ID: 3754338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell killing, DNA polymerase inactivation and radiosensitization to low dose rate irradiation by mild hyperthermia in four human cell lines.
    Raaphorst GP; Yang DP; Bussey A; Ng CE
    Int J Hyperthermia; 1995; 11(6):841-54. PubMed ID: 8586905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-PKcs subunits in radiosensitization by hyperthermia on hepatocellular carcinoma hepG2 cell line.
    Zeng ZC; Jiang GL; Wang GM; Tang ZY; Curran WJ; Iliakis G
    World J Gastroenterol; 2002 Oct; 8(5):797-803. PubMed ID: 12378618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat radiosensitization and the level of DNA polymerases alpha and beta of human colony-forming unit-granulocyte-macrophage and myeloid leukemias sensitive and resistant to chemotherapeutic agents.
    Mivechi NF; Miyachi H; Scanlon KJ
    Cancer Res; 1990 Apr; 50(7):2044-8. PubMed ID: 2317794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal radiosensitization in Chinese hamster (V79) and mouse C3H 10T 1/2 cells. The thermotolerance effect.
    Raaphorst GP; Azzam EI
    Br J Cancer; 1983 Jul; 48(1):45-54. PubMed ID: 6871078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermic radiosensitization of thermotolerant Chinese hamster ovary cells.
    Holahan PK; Wong RS; Thompson LL; Dewey WC
    Radiat Res; 1986 Sep; 107(3):332-43. PubMed ID: 3749467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in heat-induced radiosensitization accompanied by nuclear structure alterations in Chinese hamster cells.
    Laszlo A; Davidson T; Harvey A; Sim JE; Malyapa RS; Spitz DR; Roti Roti JL
    Int J Hyperthermia; 2006 Feb; 22(1):43-60. PubMed ID: 16423752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential radiosensitization of human prostatic carcinoma cells by mild hyperthermia.
    Ryu S; Brown SL; Kim SH; Khil MS; Kim JH
    Int J Radiat Oncol Biol Phys; 1996 Jan; 34(1):133-8. PubMed ID: 12118542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thermotolerance and step-down heating on thermal radiosensitization in CHO cells.
    Dikomey E; Jung H
    Int J Radiat Biol; 1992 Feb; 61(2):235-42. PubMed ID: 1351911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of DNA-polymerase beta activity of CHO cells by single and combined heat treatments.
    Dikomey E; Becker W; Wielckens K
    Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Nov; 52(5):775-85. PubMed ID: 3500145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.