These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31753353)

  • 1. Elucidating the role of microstructural modification on stress corrosion cracking of biodegradable Mg4Zn alloy in simulated body fluid.
    Prabhu DB; Nampoothiri J; Elakkiya V; Narmadha R; Selvakumar R; Sivasubramanian R; Gopalakrishnan P; Ravi KR
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110164. PubMed ID: 31753353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.
    Hakimi O; Aghion E; Goldman J
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.
    Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments.
    Törne K; Örnberg A; Weissenrieder J
    Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of Equal Channel Angular Pressing on the stress corrosion cracking susceptibility of AZ31 alloy in simulated body fluid.
    Peron M; Skaret PC; Fabrizi A; Varone A; Montanari R; Roven HJ; Ferro P; Berto F; Torgersen J
    J Mech Behav Biomed Mater; 2020 Jun; 106():103724. PubMed ID: 32250950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining.
    Peron M; Bertolini R; Ghiotti A; Torgersen J; Bruschi S; Berto F
    J Mech Behav Biomed Mater; 2020 Jan; 101():103429. PubMed ID: 31522123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys.
    Lu Y; Bradshaw AR; Chiu YL; Jones IP
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():480-6. PubMed ID: 25579949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.
    Gu XN; Zhou WR; Zheng YF; Cheng Y; Wei SC; Zhong SP; Xi TF; Chen LJ
    Acta Biomater; 2010 Dec; 6(12):4605-13. PubMed ID: 20656074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of solid-solution and aging treatment on corrosion behavior of orthogonal designed and vacuum melted Mg-Zn-Ca-Mn alloys.
    Liu D; Zhou T; Liu Z; Guo B
    J Appl Biomater Funct Mater; 2020; 18():2280800019887906. PubMed ID: 31996069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.
    Jafari S; Singh Raman RK
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():278-287. PubMed ID: 28575985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy.
    Lin DJ; Hung FY; Lui TS; Yeh ML
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():300-8. PubMed ID: 25842139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.
    Bornapour M; Celikin M; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid.
    Bian D; Zhou W; Liu Y; Li N; Zheng Y; Sun Z
    Acta Biomater; 2016 Sep; 41():351-60. PubMed ID: 27221795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Microstructure and Distribution of the Second Phase on the Stress Corrosion Cracking of Biomedical Mg-Zn-Zr-xSr Alloys.
    Chen L; Sheng Y; Wang X; Zhao X; Liu H; Li W
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29614043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application.
    Wang J; Wang L; Guan S; Zhu S; Ren C; Hou S
    J Mater Sci Mater Med; 2010 Jul; 21(7):2001-8. PubMed ID: 20352299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr.
    Chen L; Bin Y; Zou W; Wang X; Li W
    J Mech Behav Biomed Mater; 2017 Feb; 66():187-200. PubMed ID: 27894051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation of ZM21 magnesium alloy in simulated body fluids.
    Witecka A; Bogucka A; Yamamoto A; Máthis K; Krajňák T; Jaroszewicz J; Święszkowski W
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():59-69. PubMed ID: 27157728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment.
    Jafari S; Raman RKS; Davies CHJ; Hofstetter J; Uggowitzer PJ; Löffler JF
    J Mech Behav Biomed Mater; 2017 Jan; 65():634-643. PubMed ID: 27741493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios.
    Zhang X; Yuan G; Niu J; Fu P; Ding W
    J Mech Behav Biomed Mater; 2012 May; 9():153-62. PubMed ID: 22498293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.