These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 31753354)
1. Fabrication of high strength, antibacterial and biocompatible Ti-5Mo-5Ag alloy for medical and surgical implant applications. Zhang Y; Chu K; He S; Wang B; Zhu W; Ren F Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110165. PubMed ID: 31753354 [TBL] [Abstract][Full Text] [Related]
2. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Chen M; Zhang E; Zhang L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433 [TBL] [Abstract][Full Text] [Related]
3. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys. Zhang E; Ren J; Li S; Yang L; Qin G Biomed Mater; 2016 Oct; 11(6):065001. PubMed ID: 27767022 [TBL] [Abstract][Full Text] [Related]
4. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys. Chen M; Yang L; Zhang L; Han Y; Lu Z; Qin G; Zhang E Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():906-917. PubMed ID: 28415546 [TBL] [Abstract][Full Text] [Related]
5. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Zhang E; Wang X; Chen M; Hou B Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1210-21. PubMed ID: 27612819 [TBL] [Abstract][Full Text] [Related]
6. Design and preparation of Ti-xFe antibacterial titanium alloys based on micro-area potential difference. Xie Y; Cui S; Hu J; Yu H; Xuan A; Wei Y; Lian Y; Wu J; Du W; Zhang E Biometals; 2024 Apr; 37(2):337-355. PubMed ID: 37904075 [TBL] [Abstract][Full Text] [Related]
7. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys. Zhang E; Li S; Ren J; Zhang L; Han Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():760-8. PubMed ID: 27612770 [TBL] [Abstract][Full Text] [Related]
8. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. Behjat A; Sanaei S; Mosallanejad MH; Atapour M; Sheikholeslam M; Saboori A; Iuliano L Biomater Adv; 2024 Oct; 163():213928. PubMed ID: 38941776 [TBL] [Abstract][Full Text] [Related]
9. Structure and properties of Ti-7.5Mo-xFe alloys. Lin DJ; Lin JH; Ju CP Biomaterials; 2002 Apr; 23(8):1723-30. PubMed ID: 11950042 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. Lei Z; Zhang H; Zhang E; You J; Ma X; Bai X Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():121-131. PubMed ID: 30184735 [TBL] [Abstract][Full Text] [Related]
11. Mechanical, corrosion, nanotribological, and biocompatibility properties of equal channel angular pressed Ti-28Nb-35.4Zr alloys for biomedical applications. Munir K; Lin J; Wright PFA; Ozan S; Li Y; Wen C Acta Biomater; 2022 Sep; 149():387-398. PubMed ID: 35817341 [TBL] [Abstract][Full Text] [Related]
12. Development of Ti-Ag-Fe ternary titanium alloy for dental application. Zhang BB; Wang BL; Wang YB; Li L; Zheng YF; Liu Y J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):185-96. PubMed ID: 22102419 [TBL] [Abstract][Full Text] [Related]
13. Microstructure, mechanical strength, chemical resistance, and antibacterial behavior of Ti-5Cu- Pandey AK; Gautam RK; Behera CK Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35679847 [TBL] [Abstract][Full Text] [Related]
14. Ti-30Nb-3Ag alloy with improved corrosion resistance and antibacterial properties for orthopedic and dental applications produced by mechanical alloying. Hussein MA; Kumar AM; Azeem MA; Sorour AA; Saravanan S J Mech Behav Biomed Mater; 2023 Jun; 142():105851. PubMed ID: 37068434 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti-12Mo alloy for dental applications. Xu W; Lu X; Wang LN; Shi ZM; Lv SM; Qian M; Qu XH J Mech Behav Biomed Mater; 2018 Dec; 88():534-547. PubMed ID: 30223215 [TBL] [Abstract][Full Text] [Related]
16. The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application. Liu J; Zhang X; Wang H; Li F; Li M; Yang K; Zhang E Biomed Mater; 2014 Apr; 9(2):025013. PubMed ID: 24565798 [TBL] [Abstract][Full Text] [Related]
17. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Lin J; Tong X; Shi Z; Zhang D; Zhang L; Wang K; Wei A; Jin L; Lin J; Li Y; Wen C Acta Biomater; 2020 Apr; 106():410-427. PubMed ID: 32068137 [TBL] [Abstract][Full Text] [Related]
18. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application. Li HF; Qiu KJ; Zhou FY; Li L; Zheng YF Sci Rep; 2016 Nov; 6():37475. PubMed ID: 27897182 [TBL] [Abstract][Full Text] [Related]
19. A biodegradable Zn-5Gd alloy with biomechanical compatibility, cytocompatibility, antibacterial ability, and in vitro and in vivo osteogenesis for orthopedic applications. Tong X; Dong Y; Han Y; Zhou R; Zhu L; Zhang D; Dai Y; Shen X; Li Y; Wen C; Lin J Acta Biomater; 2024 Mar; 177():538-559. PubMed ID: 38253302 [TBL] [Abstract][Full Text] [Related]
20. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys. Xu JL; Tao SC; Bao LZ; Luo JM; Zheng YF Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():156-165. PubMed ID: 30678900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]