BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

632 related articles for article (PubMed ID: 31753376)

  • 1. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects.
    Kumar S; Nehra M; Kedia D; Dilbaghi N; Tankeshwar K; Kim KH
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110154. PubMed ID: 31753376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective.
    Chen L; Zhou C; Jiang C; Huang X; Liu Z; Zhang H; Liang W; Zhao J
    Front Bioeng Biotechnol; 2023; 11():1206806. PubMed ID: 37675405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances and Perspective of Nanotechnology-Based Implants for Orthopedic Applications.
    Chen MQ
    Front Bioeng Biotechnol; 2022; 10():878257. PubMed ID: 35547165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnology and biomaterials for orthopedic medical applications.
    Balasundaram G; Webster TJ
    Nanomedicine (Lond); 2006 Aug; 1(2):169-76. PubMed ID: 17716106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants.
    Jaggessar A; Shahali H; Mathew A; Yarlagadda PKDV
    J Nanobiotechnology; 2017 Oct; 15(1):64. PubMed ID: 28969628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.
    Grumezescu AM; Chifiriuc CM
    Curr Med Chem; 2014; 21(29):3311. PubMed ID: 24606506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanobiotechnology Perspectives on Prevention and Treatment of Ortho-paedic Implant Associated Infection.
    Borse V; Pawar V; Shetty G; Mullaji A; Srivastava R
    Curr Drug Deliv; 2016; 13(2):175-85. PubMed ID: 26263909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The era of biofunctional biomaterials in orthopedics: what does the future hold?
    Rehman M; Madni A; Webster TJ
    Expert Rev Med Devices; 2018 Mar; 15(3):193-204. PubMed ID: 29347851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance.
    Rasouli R; Barhoum A; Uludag H
    Biomater Sci; 2018 May; 6(6):1312-1338. PubMed ID: 29744496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials.
    Anyaegbunam NJ; Mba IE; Ige AO; Ogunrinola TE; Emenike OK; Uwazie CK; Ujah PN; Oni AJ; Anyaegbunam ZKG; Olawade DB
    World J Microbiol Biotechnol; 2024 Feb; 40(3):102. PubMed ID: 38366174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review.
    Liang W; Zhou C; Bai J; Zhang H; Long H; Jiang B; Dai H; Wang J; Zhang H; Zhao J
    Front Bioeng Biotechnol; 2024; 12():1342340. PubMed ID: 38567086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-functional nano-coatings on metallic biomaterials.
    Mahapatro A
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():227-51. PubMed ID: 26117759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in nanomaterials for upgrading treatment of orthopedics diseases.
    Shang J; Zhou C; Jiang C; Huang X; Liu Z; Zhang H; Zhao J; Liang W; Zeng B
    Front Bioeng Biotechnol; 2023; 11():1221365. PubMed ID: 37621999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing orthopedic implant bioactivity: refining the nanotopography.
    Wang G; Moya S; Lu Z; Gregurec D; Zreiqat H
    Nanomedicine (Lond); 2015; 10(8):1327-41. PubMed ID: 25955126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.
    Bahl S; Shreyas P; Trishul MA; Suwas S; Chatterjee K
    Nanoscale; 2015 May; 7(17):7704-16. PubMed ID: 25833718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable magnesium alloys as temporary orthopaedic implants: a review.
    Kamrani S; Fleck C
    Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in biomaterials and surface technologies.
    Richards RG; Moriarty TF; Miclau T; McClellan RT; Grainger DW
    J Orthop Trauma; 2012 Dec; 26(12):703-7. PubMed ID: 22913967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections.
    Barros J; Monteiro FJ; Ferraz MP
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired surface functionalization of metallic biomaterials.
    Su Y; Luo C; Zhang Z; Hermawan H; Zhu D; Huang J; Liang Y; Li G; Ren L
    J Mech Behav Biomed Mater; 2018 Jan; 77():90-105. PubMed ID: 28898726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotubular surface modification of metallic implants via electrochemical anodization technique.
    Wang LN; Jin M; Zheng Y; Guan Y; Lu X; Luo JL
    Int J Nanomedicine; 2014; 9():4421-35. PubMed ID: 25258532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.