These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 31753660)
21. Sensitive detection of polycyclic aromatic hydrocarbons with gold colloid coupled chloride ion SERS sensor. Gong X; Liao X; Li Y; Cao H; Zhao Y; Li H; Cassidy DP Analyst; 2019 Nov; 144(22):6698-6705. PubMed ID: 31599884 [TBL] [Abstract][Full Text] [Related]
22. High-Sensitivity Surface-Enhanced Raman Scattering (SERS) Substrate Based on a Gold Colloid Solution with a pH Change for Detection of Trace-Level Polycyclic Aromatic Hydrocarbons in Aqueous Solution. Shi X; Liu S; Han X; Ma J; Jiang Y; Yu G Appl Spectrosc; 2015 May; 69(5):574-9. PubMed ID: 25909769 [TBL] [Abstract][Full Text] [Related]
23. β-CD Dimer-immobilized Ag Assembly Embedded Silica Nanoparticles for Sensitive Detection of Polycyclic Aromatic Hydrocarbons. Hahm E; Jeong D; Cha MG; Choi JM; Pham XH; Kim HM; Kim H; Lee YS; Jeong DH; Jung S; Jun BH Sci Rep; 2016 May; 6():26082. PubMed ID: 27184729 [TBL] [Abstract][Full Text] [Related]
25. Highly sensitive and selective sensing platform based on π-π interaction between tricyclic aromatic hydrocarbons with thionine-graphene composite. Liu S; Wei M; Zheng X; Xu S; Zhou C Anal Chim Acta; 2014 May; 826():21-7. PubMed ID: 24793849 [TBL] [Abstract][Full Text] [Related]
26. Simultaneous and rapid determination of polycyclic aromatic hydrocarbons by facile and green synthesis of silver nanoparticles as effective SERS substrate. Li M; Yu H; Cheng Y; Guo Y; Yao W; Xie Y Ecotoxicol Environ Saf; 2020 Sep; 200():110780. PubMed ID: 32470683 [TBL] [Abstract][Full Text] [Related]
27. Graphene Oxide Nanoprisms for Sensitive Detection of Environmentally Important Aromatic Compounds with SERS. Shanta PV; Cheng Q ACS Sens; 2017 Jun; 2(6):817-827. PubMed ID: 28723120 [TBL] [Abstract][Full Text] [Related]
29. SERS detection of polycyclic aromatic hydrocarbons using a bare gold nanoparticles coupled film system. Gu HX; Hu K; Li DW; Long YT Analyst; 2016 Jul; 141(14):4359-65. PubMed ID: 27169487 [TBL] [Abstract][Full Text] [Related]
30. Ultra-trace and quantitative SERS detection of polycyclic aromatic hydrocarbons based on Au nanoscale convex polyhedrons with embedded probe molecules. Yan X; Zhao H; Song H; Ma J; Shi X Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121566. PubMed ID: 35841855 [TBL] [Abstract][Full Text] [Related]
32. [Detection of High Molecular Weight Polycyclic Aromatic Hydrocarbons in Mixed Colloid Solution of Spherical Au and Urchin-Like Au-Ag Alloy with Surface-Enhanced Raman Scattering]. Shi XF; Meng C; Ma LZ; Ma HK; Zhang XM; Ma J Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jul; 36(7):2128-33. PubMed ID: 30035901 [TBL] [Abstract][Full Text] [Related]
33. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Fan W; Lee YH; Pedireddy S; Zhang Q; Liu T; Ling XY Nanoscale; 2014 May; 6(9):4843-51. PubMed ID: 24664184 [TBL] [Abstract][Full Text] [Related]
34. Ratiometric Sensing of Polycyclic Aromatic Hydrocarbons Using Capturing Ligand Functionalized Mesoporous Au Nanoparticles as a Surface-Enhanced Raman Scattering Substrate. Zhang D; Hao R; Zhang L; You H; Fang J Langmuir; 2020 Sep; 36(38):11366-11373. PubMed ID: 32877608 [TBL] [Abstract][Full Text] [Related]
35. Quantitative analysis of polycyclic aromatic hydrocarbons (PAHs) in water by surface-enhanced Raman spectroscopy (SERS) combined with Random Forest. Guo M; Li M; Fu H; Zhang Y; Chen T; Tang H; Zhang T; Li H Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122057. PubMed ID: 36332395 [TBL] [Abstract][Full Text] [Related]
36. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect. Xu J; Du J; Jing C; Zhang Y; Cui J ACS Appl Mater Interfaces; 2014 May; 6(9):6891-7. PubMed ID: 24720732 [TBL] [Abstract][Full Text] [Related]
37. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Liu M; Chen W Biosens Bioelectron; 2013 Aug; 46():68-73. PubMed ID: 23500479 [TBL] [Abstract][Full Text] [Related]
38. [Applications of surface-enhanced Raman spectroscopy to detection of polycyclic aromatic hydrocarbons]. Xie YF; Wang X; Ruan WD; Song W; Zhao B Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Sep; 31(9):2319-23. PubMed ID: 22097818 [TBL] [Abstract][Full Text] [Related]
39. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate. Srichan C; Ekpanyapong M; Horprathum M; Eiamchai P; Nuntawong N; Phokharatkul D; Danvirutai P; Bohez E; Wisitsoraat A; Tuantranont A Sci Rep; 2016 Mar; 6():23733. PubMed ID: 27020705 [TBL] [Abstract][Full Text] [Related]
40. Chemical analysis of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy. Costa JC; Sant'ana AC; Corio P; Temperini ML Talanta; 2006 Dec; 70(5):1011-6. PubMed ID: 18970875 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]