BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

608 related articles for article (PubMed ID: 31753851)

  • 41. Motif oriented high-resolution analysis of ChIP-seq data reveals the topological order of CTCF and cohesin proteins on DNA.
    Nagy G; Czipa E; Steiner L; Nagy T; Pongor S; Nagy L; Barta E
    BMC Genomics; 2016 Aug; 17(1):637. PubMed ID: 27526722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localisation of the SMC loading complex Nipbl/Mau2 during mammalian meiotic prophase I.
    Visnes T; Giordano F; Kuznetsova A; Suja JA; Lander AD; Calof AL; Ström L
    Chromosoma; 2014 Jun; 123(3):239-52. PubMed ID: 24287868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin.
    Lawrimore J; Aicher JK; Hahn P; Fulp A; Kompa B; Vicci L; Falvo M; Taylor RM; Bloom K
    Mol Biol Cell; 2016 Jan; 27(1):153-66. PubMed ID: 26538024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppressor mutation analysis combined with 3D modeling explains cohesin's capacity to hold and release DNA.
    Xu X; Kanai R; Nakazawa N; Wang L; Toyoshima C; Yanagida M
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4833-E4842. PubMed ID: 29735656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA.
    Guacci V; Chatterjee F; Robison B; Koshland DE
    Elife; 2019 Jun; 8():. PubMed ID: 31162048
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chromosome compaction and chromatin stiffness enhance diffusive loop extrusion by slip-link proteins.
    Bonato A; Brackley CA; Johnson J; Michieletto D; Marenduzzo D
    Soft Matter; 2020 Mar; 16(9):2406-2414. PubMed ID: 32067018
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface.
    Houlard M; Cutts EE; Shamim MS; Godwin J; Weisz D; Presser Aiden A; Lieberman Aiden E; Schermelleh L; Vannini A; Nasmyth K
    Elife; 2021 Dec; 10():. PubMed ID: 34850681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
    Gassler J; Brandão HB; Imakaev M; Flyamer IM; Ladstätter S; Bickmore WA; Peters JM; Mirny LA; Tachibana K
    EMBO J; 2017 Dec; 36(24):3600-3618. PubMed ID: 29217590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The formation of chromatin domains involves a primary step based on the 3-D structure of DNA.
    Bernardi G
    Sci Rep; 2018 Dec; 8(1):17821. PubMed ID: 30546050
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bridging-induced phase separation induced by cohesin SMC protein complexes.
    Ryu JK; Bouchoux C; Liu HW; Kim E; Minamino M; de Groot R; Katan AJ; Bonato A; Marenduzzo D; Michieletto D; Uhlmann F; Dekker C
    Sci Adv; 2021 Feb; 7(7):. PubMed ID: 33568486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid movement and transcriptional re-localization of human cohesin on DNA.
    Davidson IF; Goetz D; Zaczek MP; Molodtsov MI; Huis In 't Veld PJ; Weissmann F; Litos G; Cisneros DA; Ocampo-Hafalla M; Ladurner R; Uhlmann F; Vaziri A; Peters JM
    EMBO J; 2016 Dec; 35(24):2671-2685. PubMed ID: 27799150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures.
    Hao X; Parmar JJ; Lelandais B; Aristov A; Ouyang W; Weber C; Zimmer C
    Genome Biol; 2021 May; 22(1):150. PubMed ID: 33975635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Roles of NIPBL in maintenance of genome stability.
    Gao D; Zhu B; Cao X; Zhang M; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():181-186. PubMed ID: 30096364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
    Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; Bochkov ID; Chinnappan D; Cutkosky A; Li J; Geeting KP; Gnirke A; Melnikov A; McKenna D; Stamenova EK; Lander ES; Aiden EL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6456-65. PubMed ID: 26499245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cohesion and cohesin-dependent chromatin organization.
    Nishiyama T
    Curr Opin Cell Biol; 2019 Jun; 58():8-14. PubMed ID: 30544080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resolving the Genomic Localization of the Kollerin Cohesin-Loader Complex.
    Wendt KS
    Methods Mol Biol; 2017; 1515():115-123. PubMed ID: 27797076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The cohesin ring concatenates sister DNA molecules.
    Haering CH; Farcas AM; Arumugam P; Metson J; Nasmyth K
    Nature; 2008 Jul; 454(7202):297-301. PubMed ID: 18596691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An In Vitro Assay for Monitoring Topological DNA Entrapment by the Chromosomal Cohesin Complex.
    Murayama Y; Uhlmann F
    Methods Mol Biol; 2017; 1515():23-35. PubMed ID: 27797071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering.
    Çamdere G; Guacci V; Stricklin J; Koshland D
    Elife; 2015 Nov; 4():. PubMed ID: 26583750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.