These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31754029)

  • 1. Integration of thermochemical water splitting with CO
    Brady C; Davis ME; Xu B
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25001-25007. PubMed ID: 31754029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar thermochemical splitting of water to generate hydrogen.
    Rao CNR; Dey S
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13385-13393. PubMed ID: 28522461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons.
    Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S
    Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solar tower fuel plant for the thermochemical production of kerosene from H
    Zoller S; Koepf E; Nizamian D; Stephan M; Patané A; Haueter P; Romero M; González-Aguilar J; Lieftink D; de Wit E; Brendelberger S; Sizmann A; Steinfeld A
    Joule; 2022 Jul; 6(7):1606-1616. PubMed ID: 35915707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals.
    Rego de Vasconcelos B; Lavoie JM
    Front Chem; 2019; 7():392. PubMed ID: 31231632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Solar Thermochemical CO
    Pullar RC; Novais RM; Caetano APF; Barreiros MA; Abanades S; Oliveira FAC
    Front Chem; 2019; 7():601. PubMed ID: 31552219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.
    Falter C; Batteiger V; Sizmann A
    Environ Sci Technol; 2016 Jan; 50(1):470-7. PubMed ID: 26641878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar-Driven Thermochemical Splitting of CO
    Tou M; Michalsky R; Steinfeld A
    Joule; 2017 Sep; 1(1):146-154. PubMed ID: 29034368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.
    Torella JP; Gagliardi CJ; Chen JS; Bediako DK; Colón B; Way JC; Silver PA; Nocera DG
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2337-42. PubMed ID: 25675518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Capture of CO
    Sanz-Pérez ES; Murdock CR; Didas SA; Jones CW
    Chem Rev; 2016 Oct; 116(19):11840-11876. PubMed ID: 27560307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current status and pillars of direct air capture technologies.
    Ozkan M; Nayak SP; Ruiz AD; Jiang W
    iScience; 2022 Apr; 25(4):103990. PubMed ID: 35310937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Energy Future.
    Newman J; Bonino CA; Trainham JA
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():153-174. PubMed ID: 29879382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar photochemical and thermochemical splitting of water.
    Rao CN; Lingampalli SR; Dey S; Roy A
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ln0.5 A0.5 MnO3 (Ln=Lanthanide, A= Ca, Sr) Perovskites Exhibiting Remarkable Performance in the Thermochemical Generation of CO and H2 from CO2 and H2 O.
    Dey S; Naidu BS; Rao CN
    Chemistry; 2015 May; 21(19):7077-81. PubMed ID: 25808191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO
    Zhang L; Kong G; Meng Y; Tian J; Zhang L; Wan S; Lin J; Wang Y
    ChemSusChem; 2017 Dec; 10(23):4709-4714. PubMed ID: 29045065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of the Two-Step H₂O/CO₂-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions.
    Loutzenhiser PG; Meier A; Steinfeld A
    Materials (Basel); 2010 Nov; 3(11):4922-4938. PubMed ID: 28883361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO
    van der Giesen C; Meinrenken CJ; Kleijn R; Sprecher B; Lackner KS; Kramer GJ
    Environ Sci Technol; 2017 Jan; 51(2):1024-1034. PubMed ID: 27935700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.
    Ermanoski I; Miller JE; Allendorf MD
    Phys Chem Chem Phys; 2014 May; 16(18):8418-27. PubMed ID: 24668070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper ferrite and cobalt oxide two-layer coated macroporous SiC substrate for efficient CO
    Guene Lougou B; Geng B; Jiang B; Zhang H; Sun Q; Shuai Y; Qu Z; Zhao J; Wang CH
    J Colloid Interface Sci; 2022 Dec; 627():516-531. PubMed ID: 35870404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.