These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 31754117)
1. An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction. Varadhan P; Fu HC; Kao YC; Horng RH; He JH Nat Commun; 2019 Nov; 10(1):5282. PubMed ID: 31754117 [TBL] [Abstract][Full Text] [Related]
2. Hybrid Perovskite-Based Wireless Integrated Device Exceeding a Solar to Hydrogen Conversion Efficiency of 11. Park J; Lee J; Lee H; Im H; Moon S; Jeong CS; Yang W; Moon J Small; 2023 Jul; 19(27):e2300174. PubMed ID: 36965011 [TBL] [Abstract][Full Text] [Related]
3. Artificial Leaf for Solar-Driven Ammonia Conversion at Milligram-Scale Using Triple Junction III-V Photoelectrode. Huang H; Periyanagounder D; Chen C; Li Z; Lei Q; Han Y; Huang KW; He JH Adv Sci (Weinh); 2023 May; 10(14):e2205808. PubMed ID: 36950725 [TBL] [Abstract][Full Text] [Related]
4. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231 [TBL] [Abstract][Full Text] [Related]
5. Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction. Fu HC; Varadhan P; Lin CH; He JH Nat Commun; 2020 Aug; 11(1):3930. PubMed ID: 32764537 [TBL] [Abstract][Full Text] [Related]
6. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Jia J; Seitz LC; Benck JD; Huo Y; Chen Y; Ng JW; Bilir T; Harris JS; Jaramillo TF Nat Commun; 2016 Oct; 7():13237. PubMed ID: 27796309 [TBL] [Abstract][Full Text] [Related]
7. Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency. Ye S; Shi W; Liu Y; Li D; Yin H; Chi H; Luo Y; Ta N; Fan F; Wang X; Li C J Am Chem Soc; 2021 Aug; 143(32):12499-12508. PubMed ID: 34343431 [TBL] [Abstract][Full Text] [Related]
8. Ligand-Engineered Quantum Dots Decorated Heterojunction Photoelectrodes for Self-Biased Solar Water Splitting. Cai M; Tong X; Zhao H; Li X; You Y; Wang R; Xia L; Zhou N; Wang L; Wang ZM Small; 2022 Nov; 18(46):e2204495. PubMed ID: 36148833 [TBL] [Abstract][Full Text] [Related]
9. High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Yu JM; Lee J; Kim YS; Song J; Oh J; Lee SM; Jeong M; Kim Y; Kwak JH; Cho S; Yang C; Jang JW Nat Commun; 2020 Nov; 11(1):5509. PubMed ID: 33139804 [TBL] [Abstract][Full Text] [Related]
10. Organometal Halide Perovskite-Based Photoelectrochemical Module Systems for Scalable Unassisted Solar Water Splitting. Choi H; Seo S; Yoon CJ; Ahn JB; Kim CS; Jung Y; Kim Y; Toma FM; Kim H; Lee S Adv Sci (Weinh); 2023 Nov; 10(33):e2303106. PubMed ID: 37752753 [TBL] [Abstract][Full Text] [Related]
12. An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting. Oh S; Song H; Oh J Nano Lett; 2017 Sep; 17(9):5416-5422. PubMed ID: 28800240 [TBL] [Abstract][Full Text] [Related]
13. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101 [TBL] [Abstract][Full Text] [Related]
14. BiVO Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion. Zhang D; Shi J; Zi W; Wang P; Liu SF ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741 [TBL] [Abstract][Full Text] [Related]
16. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting. Zhou J; Cheng H; Cheng J; Wang L; Xu H Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184 [TBL] [Abstract][Full Text] [Related]
17. Exploratory Study of Zn Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676 [TBL] [Abstract][Full Text] [Related]
18. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735 [TBL] [Abstract][Full Text] [Related]
19. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics. Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560 [TBL] [Abstract][Full Text] [Related]
20. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications. Leem JW; Lee HK; Jun DH; Heo J; Park WK; Park JH; Yu JS Opt Express; 2014 Mar; 22(5):A328-34. PubMed ID: 24800289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]