These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31754240)

  • 1. Programmable hydraulic resistor for microfluidic chips using electrogate arrays.
    Salva ML; Temiz Y; Rocca M; Arango YC; Niemeyer CM; Delamarche E
    Sci Rep; 2019 Nov; 9(1):17242. PubMed ID: 31754240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary-driven multiparametric microfluidic chips for one-step immunoassays.
    Gervais L; Hitzbleck M; Delamarche E
    Biosens Bioelectron; 2011 Sep; 27(1):64-70. PubMed ID: 21752632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-nanoliter, real-time flow monitoring in microfluidic chips using a portable device and smartphone.
    Temiz Y; Delamarche E
    Sci Rep; 2018 Jul; 8(1):10603. PubMed ID: 30006576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Microfluidics Enabled by 3D Printed Bionic Janus Porous Matrics for Microfluidic Logic Chips.
    Xie M; Zhan Z; Zhang C; Xu W; Zhang C; Chen Y; Dong Z; Wang Z
    Small; 2023 Aug; 19(34):e2300047. PubMed ID: 37127869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics.
    Arango Y; Temiz Y; Gökçe O; Delamarche E
    Sci Adv; 2020 Apr; 6(16):eaay8305. PubMed ID: 32494605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Microfabrication of Highly Parallelized Three-Dimensional Microfluidics on Silicon.
    Yadavali S; Lee D; Issadore D
    Sci Rep; 2019 Aug; 9(1):12213. PubMed ID: 31434933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex Nucleic Acid Hybridization Reactions inside Capillary-Driven Microfluidic Chips.
    Salva ML; Rocca M; Hu Y; Delamarche E; Niemeyer CM
    Small; 2020 Dec; 16(49):e2005476. PubMed ID: 33201612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siphon-driven microfluidic passive pump with a yarn flow resistance controller.
    Jeong GS; Oh J; Kim SB; Dokmeci MR; Bae H; Lee SH; Khademhosseini A
    Lab Chip; 2014 Nov; 14(21):4213-9. PubMed ID: 25184743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital microfluidic meter-on-chip.
    Fang Z; Ding Y; Zhang Z; Wang F; Wang Z; Wang H; Pan T
    Lab Chip; 2020 Feb; 20(4):722-733. PubMed ID: 31853525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-microfluidics: biomaterials and biomimetic designs.
    Domachuk P; Tsioris K; Omenetto FG; Kaplan DL
    Adv Mater; 2010 Jan; 22(2):249-60. PubMed ID: 20217686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chain reaction of structurally programmed capillary flow events.
    Yafia M; Ymbern O; Olanrewaju AO; Parandakh A; Sohrabi Kashani A; Renault J; Jin Z; Kim G; Ng A; Juncker D
    Nature; 2022 May; 605(7910):464-469. PubMed ID: 35585345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance PCB-based capillary pumps for affordable point-of-care diagnostics.
    Vasilakis N; Papadimitriou KI; Morgan H; Prodromakis T
    Microfluid Nanofluidics; 2017; 21(6):103. PubMed ID: 32025228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization.
    Kojic SP; Stojanovic GM; Radonic V
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical analysis with microfluidic systems.
    Bilitewski U; Genrich M; Kadow S; Mersal G
    Anal Bioanal Chem; 2003 Oct; 377(3):556-69. PubMed ID: 14504677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.