These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31754437)
1. Dissecting cellobiose metabolic pathway and its application in biorefinery through consolidated bioprocessing in Li J; Gu S; Zhao Z; Chen B; Liu Q; Sun T; Sun W; Tian C Fungal Biol Biotechnol; 2019; 6():21. PubMed ID: 31754437 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of the cellulolytic thermophilic fungus Li J; Zhang Y; Li J; Sun T; Tian C Biotechnol Biofuels; 2020; 13():23. PubMed ID: 32021654 [TBL] [Abstract][Full Text] [Related]
3. Coordination of consolidated bioprocessing technology and carbon dioxide fixation to produce malic acid directly from plant biomass in Myceliophthora thermophila. Li J; Chen B; Gu S; Zhao Z; Liu Q; Sun T; Zhang Y; Wu T; Liu D; Sun W; Tian C Biotechnol Biofuels; 2021 Sep; 14(1):186. PubMed ID: 34556173 [TBL] [Abstract][Full Text] [Related]
4. Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila. Li J; Lin L; Sun T; Xu J; Ji J; Liu Q; Tian C Metab Eng; 2020 Sep; 61():416-426. PubMed ID: 31078793 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose. Lee WH; Jin YS J Microbiol Biotechnol; 2017 Sep; 27(9):1649-1656. PubMed ID: 28683531 [TBL] [Abstract][Full Text] [Related]
6. Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila. Zhang Y; Sun T; Wu T; Li J; Hu D; Liu D; Li J; Tian C Metab Eng; 2023 Jul; 78():192-199. PubMed ID: 37348810 [TBL] [Abstract][Full Text] [Related]
7. Independent metabolism of oligosaccharides is the keystone of synchronous utilization of cellulose and hemicellulose in Liu J; Chen M; Gu S; Fan R; Zhao Z; Sun W; Yao Y; Li J; Tian C PNAS Nexus; 2024 Feb; 3(2):pgae053. PubMed ID: 38380057 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional Profiling of Wang H; Sun T; Zhao Z; Gu S; Liu Q; Wu T; Wang D; Tian C; Li J Front Microbiol; 2021; 12():664011. PubMed ID: 33995328 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Proteome Profiling Reveals Cellobiose-Dependent Protein Processing and Export Pathways for the Lignocellulolytic Response in Neurospora crassa. Liu D; Liu Y; Zhang D; Chen X; Liu Q; Xiong B; Zhang L; Wei L; Wang Y; Fang H; Liesche J; Wei Y; Glass NL; Hao Z; Chen S Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471912 [TBL] [Abstract][Full Text] [Related]
10. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. Guo Z; Duquesne S; Bozonnet S; Cioci G; Nicaud JM; Marty A; O'Donohue MJ Biotechnol Biofuels; 2015; 8():109. PubMed ID: 26244054 [TBL] [Abstract][Full Text] [Related]
11. Expression of a Cellobiose Phosphorylase from Thermotoga maritima in Caldicellulosiruptor bescii Improves the Phosphorolytic Pathway and Results in a Dramatic Increase in Cellulolytic Activity. Kim SK; Himmel ME; Bomble YJ; Westpheling J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29101202 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of the thermophilic filamentous fungus Gu S; Li J; Chen B; Sun T; Liu Q; Xiao D; Tian C Biotechnol Biofuels; 2018; 11():323. PubMed ID: 30534201 [TBL] [Abstract][Full Text] [Related]
13. MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the Li N; Liu Y; Liu D; Liu D; Zhang C; Lin L; Zhu Z; Li H; Dai Y; Wang X; Liu Q; Tian C Appl Environ Microbiol; 2022 Oct; 88(19):e0126322. PubMed ID: 36165620 [TBL] [Abstract][Full Text] [Related]
14. The putative methyltransferase LaeA regulates mycelium growth and cellulase production in Myceliophthora thermophila. Zhao Z; Gu S; Liu D; Liu D; Chen B; Li J; Tian C Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):58. PubMed ID: 37013645 [TBL] [Abstract][Full Text] [Related]
15. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Ha SJ; Galazka JM; Joong Oh E; Kordić V; Kim H; Jin YS; Cate JH Metab Eng; 2013 Jan; 15():134-43. PubMed ID: 23178501 [TBL] [Abstract][Full Text] [Related]
16. Dos Santos Gomes AC; Falkoski D; Battaglia E; Peng M; Nicolau de Almeida M; Coconi Linares N; Meijnen JP; Visser J; de Vries RP Biotechnol Biofuels; 2019; 12():220. PubMed ID: 31534479 [TBL] [Abstract][Full Text] [Related]
17. Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants. Zhu Z; Zhang M; Liu D; Liu D; Sun T; Yang Y; Dong J; Zhai H; Sun W; Liu Q; Tian C Microb Cell Fact; 2023 Aug; 22(1):150. PubMed ID: 37568174 [TBL] [Abstract][Full Text] [Related]
18. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila. Gu S; Wu T; Zhao J; Sun T; Zhao Z; Zhang L; Li J; Tian C Microb Biotechnol; 2024 Feb; 17(2):e14410. PubMed ID: 38298109 [TBL] [Abstract][Full Text] [Related]
19. Genomic insights into the fungal lignocellulolytic system of Myceliophthora thermophila. Karnaouri A; Topakas E; Antonopoulou I; Christakopoulos P Front Microbiol; 2014; 5():281. PubMed ID: 24995002 [TBL] [Abstract][Full Text] [Related]
20. A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. Munjal N; Jawed K; Wajid S; Yazdani SS PLoS One; 2015; 10(3):e0119917. PubMed ID: 25768292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]