These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31754666)

  • 1. Theoretical calculation studies on the rearrangement mechanisms of arenesulfenanilides to generate o- and p-aminodiphenyl sulfides.
    Liu G; Hou S; Xu J
    Org Biomol Chem; 2019 Dec; 17(47):10088-10096. PubMed ID: 31754666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N[1,3]-Sigmatropic shift in the benzidine rearrangement: experimental and theoretical investigation.
    Hou S; Li X; Xu J
    Org Biomol Chem; 2014 Jul; 12(27):4952-63. PubMed ID: 24879467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insight into the formal [1,3]-migration in the thermal Claisen rearrangement.
    Hou S; Li X; Xu J
    J Org Chem; 2012 Dec; 77(23):10856-69. PubMed ID: 23150994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse and chemoselective sigmatropic shift rearrangements of multisubstituted
    Zhang G; Sun S; Hou S; Xu J
    Org Biomol Chem; 2022 Jul; 20(27):5470-5480. PubMed ID: 35775435
    [No Abstract]   [Full Text] [Related]  

  • 5. Formation mechanism of furfuryl sulfides from o-furfuryl dithiocarbonates: density functional theory study for aromatic [3,3]-sigmatropic rearrangement.
    Eto M; Yamaguchi K; Yoshitake Y; Harano K
    Chem Pharm Bull (Tokyo); 2011; 59(6):681-5. PubMed ID: 21628900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rh(II)-Catalyzed [2,3]-Sigmatropic Rearrangement of Sulfur Ylides Derived from Cyclopropenes and Sulfides.
    Zhang H; Wang B; Yi H; Zhang Y; Wang J
    Org Lett; 2015 Jul; 17(13):3322-5. PubMed ID: 26077445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium porphyrin catalyzed tandem sulfonium/ammonium ylide formation and [2,3]-sigmatropic rearrangement. A concise synthesis of (+/-)-platynecine.
    Zhou CY; Yu WY; Chan PW; Che CM
    J Org Chem; 2004 Oct; 69(21):7072-82. PubMed ID: 15471455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sigmatropic Rearrangements of Hypervalent-Iodine-Tethered Intermediates for the Synthesis of Biaryls.
    Hori M; Guo JD; Yanagi T; Nogi K; Sasamori T; Yorimitsu H
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4663-4667. PubMed ID: 29451348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-Catalyzed [3,3]-Sigmatropic Rearrangement of
    Mackenroth AV; Antoni PW; Rominger F; Rudolph M; Hashmi ASK
    Org Lett; 2023 Apr; 25(16):2907-2912. PubMed ID: 37071638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective Rearrangement Reactions of Sulfur Ylide Derived from Diazoquinones and Allyl/Propargyl Sulfides.
    Yan S; Rao J; Zhou CY
    Org Lett; 2020 Nov; 22(22):9091-9096. PubMed ID: 33147039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sigmatropic proton shifts: a quantum chemical study.
    Wang Y; Yu ZX
    Org Biomol Chem; 2017 Sep; 15(35):7439-7446. PubMed ID: 28832696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cascade reactions of unsaturated xanthates and related reactions: computer-assisted molecular design and analysis of reaction mechanisms].
    Harano K
    Yakugaku Zasshi; 2005 Jun; 125(6):469-89. PubMed ID: 15930816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and Specificity of Phenazine Biosynthesis Protein PhzF.
    Diederich C; Leypold M; Culka M; Weber H; Breinbauer R; Ullmann GM; Blankenfeldt W
    Sci Rep; 2017 Jul; 7(1):6272. PubMed ID: 28740244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bent bonds and the antiperiplanar hypothesis - a simple model to rationalize [1,3]-sigmatropic alkyl shifts.
    Deslongchamps G; Deslongchamps P
    Org Biomol Chem; 2016 Aug; 14(32):7754-67. PubMed ID: 27466079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and Origins of Periselectivity of the Ambimodal [6 + 4] Cycloadditions of Tropone to Dimethylfulvene.
    Yu P; Chen TQ; Yang Z; He CQ; Patel A; Lam YH; Liu CY; Houk KN
    J Am Chem Soc; 2017 Jun; 139(24):8251-8258. PubMed ID: 28535677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mechanistic insights on aryl propargyl ether Claisen rearrangement.
    Srinivasadesikan V; Dai JK; Lee SL
    Org Biomol Chem; 2014 Jun; 12(24):4163-71. PubMed ID: 24827936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Biaryls from Aryl Sulfoxides and Anilines by Means of a Sigmatropic Rearrangement.
    Yanagi T; Nogi K; Yorimitsu H
    Chemistry; 2020 Jan; 26(4):783-787. PubMed ID: 31489707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on chlorine and hydrogen shift in cycloheptatriene and cyclopentadiene derivatives.
    Okajima T; Imafuku K
    J Org Chem; 2002 Feb; 67(3):625-32. PubMed ID: 11855999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and computational studies on the [3,3]- and [3,5]-sigmatropic rearrangements of acetoxycyclohexadienones: a non-ionic mechanism for acyl migration.
    Sharma S; Rajale T; Cordes DB; Hung-Low F; Birney DM
    J Am Chem Soc; 2013 Sep; 135(38):14438-47. PubMed ID: 23968489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Unexpected Ireland-Claisen Rearrangement Cascade During the Synthesis of the Tricyclic Core of Curcusone C: Mechanistic Elucidation by Trial-and-Error and Automatic Artificial Force-Induced Reaction (AFIR) Computations.
    Lee CW; Taylor BLH; Petrova GP; Patel A; Morokuma K; Houk KN; Stoltz BM
    J Am Chem Soc; 2019 May; 141(17):6995-7004. PubMed ID: 30907087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.