BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 31754698)

  • 1. A guide to computational methods for G-quadruplex prediction.
    Puig Lombardi E; Londoño-Vallejo A
    Nucleic Acids Res; 2020 Jan; 48(1):1-15. PubMed ID: 31754698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship Between G-Quadruplex Sequence Composition in Viruses and Their Hosts.
    Puig Lombardi E; Londoño-Vallejo A; Nicolas A
    Molecules; 2019 May; 24(10):. PubMed ID: 31137580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G4Boost: a machine learning-based tool for quadruplex identification and stability prediction.
    Cagirici HB; Budak H; Sen TZ
    BMC Bioinformatics; 2022 Jun; 23(1):240. PubMed ID: 35717172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence of quadruplexes in the human genome.
    Huppert JL; Balasubramanian S
    Nucleic Acids Res; 2005; 33(9):2908-16. PubMed ID: 15914667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-quadruplex DNA: A Longer Story.
    Monsen RC; Trent JO; Chaires JB
    Acc Chem Res; 2022 Nov; 55(22):3242-3252. PubMed ID: 36282946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Updated Focus on Quadruplex Structures as Potential Therapeutic Targets in Cancer.
    Sanchez-Martin V; Lopez-Pujante C; Soriano-Rodriguez M; Garcia-Salcedo JA
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences.
    Kikin O; D'Antonio L; Bagga PS
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W676-82. PubMed ID: 16845096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadruplexes in 'Dicty': crystal structure of a four-quartet G-quadruplex formed by G-rich motif found in the Dictyostelium discoideum genome.
    Guédin A; Lin LY; Armane S; Lacroix L; Mergny JL; Thore S; Yatsunyk LA
    Nucleic Acids Res; 2018 Jun; 46(10):5297-5307. PubMed ID: 29718337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G4mismatch: Deep neural networks to predict G-quadruplex propensity based on G4-seq data.
    Barshai M; Engel B; Haim I; Orenstein Y
    PLoS Comput Biol; 2023 Mar; 19(3):e1010948. PubMed ID: 36897885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A guanine-flipping and sequestration mechanism for G-quadruplex unwinding by RecQ helicases.
    Voter AF; Qiu Y; Tippana R; Myong S; Keck JL
    Nat Commun; 2018 Oct; 9(1):4201. PubMed ID: 30305632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning model for sequence-driven DNA G-quadruplex formation.
    Sahakyan AB; Chambers VS; Marsico G; Santner T; Di Antonio M; Balasubramanian S
    Sci Rep; 2017 Nov; 7(1):14535. PubMed ID: 29109402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. G-Quadruplexes: Prediction, Characterization, and Biological Application.
    Kwok CK; Merrick CJ
    Trends Biotechnol; 2017 Oct; 35(10):997-1013. PubMed ID: 28755976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-evaluation of G-quadruplex propensity with G4Hunter.
    Bedrat A; Lacroix L; Mergny JL
    Nucleic Acids Res; 2016 Feb; 44(4):1746-59. PubMed ID: 26792894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting G4 unwinding.
    Juranek S; Paeschke K
    Methods Enzymol; 2022; 672():261-281. PubMed ID: 35934478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome.
    Roychoudhury S; Pramanik S; Harris HL; Tarpley M; Sarkar A; Spagnol G; Sorgen PL; Chowdhury D; Band V; Klinkebiel D; Bhakat KK
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11409-11420. PubMed ID: 32404420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology.
    Zhang AY; Bugaut A; Balasubramanian S
    Biochemistry; 2011 Aug; 50(33):7251-8. PubMed ID: 21744844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives.
    Li XM; Zheng KW; Zhang JY; Liu HH; He YD; Yuan BF; Hao YH; Tan Z
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14581-6. PubMed ID: 26553979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs.
    Frees S; Menendez C; Crum M; Bagga PS
    Hum Genomics; 2014 May; 8(1):8. PubMed ID: 24885782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G-quadruplexes in promoters throughout the human genome.
    Huppert JL; Balasubramanian S
    Nucleic Acids Res; 2007; 35(2):406-13. PubMed ID: 17169996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Chemical Probing for G-Quadruplex Formation.
    Kouzine F; Wojtowicz D; Yamane A; Casellas R; Przytycka TM; Levens DL
    Methods Mol Biol; 2019; 2035():369-382. PubMed ID: 31444763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.