BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31754799)

  • 1. Titanium(IV)-functionalized zirconium-organic frameworks as dual-metal affinity probe for recognition of endogenous phosphopeptides prior to mass spectrometric quantification.
    Zheng H; Wang J; Gao M; Zhang X
    Mikrochim Acta; 2019 Nov; 186(12):829. PubMed ID: 31754799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides.
    Lin H; Chen H; Shao X; Deng C
    Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ti
    He Y; Zheng Q; Lin Z
    Mikrochim Acta; 2021 Apr; 188(5):150. PubMed ID: 33813605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples.
    Hu X; Li Y; Miao A; Deng C
    Mikrochim Acta; 2020 Jun; 187(7):400. PubMed ID: 32572637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Metal Centered Zirconium-Organic Framework: A Metal-Affinity Probe for Highly Specific Interaction with Phosphopeptides.
    Peng J; Zhang H; Li X; Liu S; Zhao X; Wu J; Kang X; Qin H; Pan Z; Wu R
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35012-35020. PubMed ID: 27983800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytic acid functionalized Fe
    Zhang K; Hu D; Deng S; Han M; Wang X; Liu H; Liu Y; Xie M
    Mikrochim Acta; 2019 Jan; 186(2):68. PubMed ID: 30627783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides.
    Cao L; Zhao Y; Chu Z; Zhang X; Zhang W
    Talanta; 2020 Jan; 206():120165. PubMed ID: 31514902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides.
    Wang H; Jiao F; Gao F; Lv Y; Wu Q; Zhao Y; Shen Y; Zhang Y; Qian X
    Talanta; 2017 May; 166():133-140. PubMed ID: 28213213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides.
    Ding F; Zhao Y; Liu H; Zhang W
    Analyst; 2020 Jun; 145(12):4341-4351. PubMed ID: 32379252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of amphiphile 4-armed PEO-based Ti
    Huang YL; Wang J; Jiang YH; Yang PY; Wang GW; Liu F
    Talanta; 2019 Nov; 204():670-676. PubMed ID: 31357351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective enrichment of phosphopeptides by titanium (IV) attached monodisperse-porous poly(vinylphosphonic acid-co-ethylene dimethacrylate) microspheres.
    Salimi K; Usta DD; Çelikbıçak Ö; Pınar A; Salih B; Tuncel A
    J Chromatogr A; 2017 May; 1496():9-19. PubMed ID: 28351536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva.
    Li Y; Liu L; Wu H; Deng C
    Anal Chim Acta; 2019 Nov; 1079():111-119. PubMed ID: 31387701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. l-cysteine-modified metal-organic frameworks as multifunctional probes for efficient identification of N-linked glycopeptides and phosphopeptides in human crystalline lens.
    Wu Y; Liu Q; Deng C
    Anal Chim Acta; 2019 Jul; 1061():110-121. PubMed ID: 30926029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted immobilization of titanium (IV) on magnetic mesoporous nanomaterials derived from metal-organic frameworks for high-efficiency phosphopeptide enrichment in biological samples.
    Pu C; Zhao H; Gu Q; Zheng Y; Lan M
    Mikrochim Acta; 2020 Sep; 187(10):568. PubMed ID: 32929585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment.
    Yao J; Sun N; Wang J; Xie Y; Deng C; Zhang X
    Proteomics; 2017 Apr; 17(8):. PubMed ID: 28160437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides.
    Luo B; Yu L; He J; Li Z; Lan F; Wu Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122080. PubMed ID: 32304948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of Ti
    He Y; Zhang S; Zhong C; Yang Y; Li G; Ji Y; Lin Z
    Talanta; 2021 Dec; 235():122789. PubMed ID: 34517647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes.
    Zhang X; Feng Q; Xie Z; Xu F; Yan Y; Ding C
    Anal Bioanal Chem; 2022 Nov; 414(27):7885-7895. PubMed ID: 36136112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytic acid functionalized magnetic bimetallic metal-organic frameworks for phosphopeptide enrichment.
    Yan S; Luo B; He J; Lan F; Wu Y
    J Mater Chem B; 2021 Feb; 9(7):1811-1820. PubMed ID: 33503098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders.
    Rainer M; Sonderegger H; Bakry R; Huck CW; Morandell S; Huber LA; Gjerde DT; Bonn GK
    Proteomics; 2008 Nov; 8(21):4593-602. PubMed ID: 18837466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.