These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31755226)

  • 1. Click functionalized, tissue-specific hydrogels for osteochondral tissue engineering.
    Guo JL; Li A; Kim YS; Xie VY; Smith BT; Watson E; Bao G; Mikos AG
    J Biomed Mater Res A; 2020 Mar; 108(3):684-693. PubMed ID: 31755226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair.
    Guo JL; Kim YS; Koons GL; Lam J; Navara AM; Barrios S; Xie VY; Watson E; Smith BT; Pearce HA; Orchard EA; van den Beucken JJJP; Jansen JA; Wong ME; Mikos AG
    Acta Biomater; 2021 Jul; 128():120-129. PubMed ID: 33930575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular, tissue-specific, and biodegradable hydrogel cross-linkers for tissue engineering.
    Guo JL; Kim YS; Xie VY; Smith BT; Watson E; Lam J; Pearce HA; Engel PS; Mikos AG
    Sci Adv; 2019 Jun; 5(6):eaaw7396. PubMed ID: 31183408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionally graded hydrogels with opposing biochemical cues for osteochondral tissue engineering.
    Mahajan A; Zaidi ZS; Shukla A; Saxena R; Katti DS
    Biofabrication; 2024 May; 16(3):. PubMed ID: 38697073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
    Yang J; Zhang YS; Yue K; Khademhosseini A
    Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermogelling hydrogel charge and lower critical solution temperature influence cellular infiltration and tissue integration in an ex vivo cartilage explant model.
    Pearce HA; Swain JWR; Victor LH; Hogan KJ; Jiang EY; Bedell ML; Navara AM; Farsheed A; Kim YS; Guo JL; Hartgerink JD; Grande-Allen KJ; Mikos AG
    J Biomed Mater Res A; 2023 Jan; 111(1):15-34. PubMed ID: 36053984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells.
    Li F; Truong VX; Fisch P; Levinson C; Glattauer V; Zenobi-Wong M; Thissen H; Forsythe JS; Frith JE
    Acta Biomater; 2018 Sep; 77():48-62. PubMed ID: 30006317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic poly(γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering.
    Wang P; Zhang W; Yang R; Liu S; Ren Y; Liu X; Tan X; Chi B
    Int J Biol Macromol; 2021 Jan; 167():1508-1516. PubMed ID: 33212107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering.
    Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J
    Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees.
    Wang X; Song X; Li T; Chen J; Cheng G; Yang L; Chen C
    Am J Sports Med; 2019 Aug; 47(10):2316-2326. PubMed ID: 31233332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marrow-derived mesenchymal stem cells.
    Yang R; Wang X; Liu S; Zhang W; Wang P; Liu X; Ren Y; Tan X; Chi B
    Int J Biol Macromol; 2020 Jan; 142():332-344. PubMed ID: 31593718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.
    Pescador D; Ibáñez-Fonseca A; Sánchez-Guijo F; Briñón JG; Arias FJ; Muntión S; Hernández C; Girotti A; Alonso M; Del Cañizo MC; Rodríguez-Cabello JC; Blanco JF
    J Mater Sci Mater Med; 2017 Aug; 28(8):115. PubMed ID: 28647792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenesis of human bone marrow mesenchymal stem cells in 3-dimensional, photocrosslinked hydrogel constructs: Effect of cell seeding density and material stiffness.
    Sun AX; Lin H; Fritch MR; Shen H; Alexander PG; DeHart M; Tuan RS
    Acta Biomater; 2017 Aug; 58():302-311. PubMed ID: 28611002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3.
    Schneider MC; Chu S; Randolph MA; Bryant SJ
    Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues.
    Chen J; Chin A; Almarza AJ; Taboas JM
    Biomed Mater; 2020 May; 15(4):045006. PubMed ID: 31470441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering.
    Zhang W; Zhang Y; Zhang A; Ling C; Sheng R; Li X; Yao Q; Chen J
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112215. PubMed ID: 34225867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in a simulated osteochondral environment is hydrogel dependent.
    de Vries-van Melle ML; Tihaya MS; Kops N; Koevoet WJ; Murphy JM; Verhaar JA; Alini M; Eglin D; van Osch GJ
    Eur Cell Mater; 2014 Feb; 27():112-23; discussion 123. PubMed ID: 24488855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules.
    Xu J; Feng Q; Lin S; Yuan W; Li R; Li J; Wei K; Chen X; Zhang K; Yang Y; Wu T; Wang B; Zhu M; Guo R; Li G; Bian L
    Biomaterials; 2019 Jul; 210():51-61. PubMed ID: 31075723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially confined induction of endochondral ossification by functionalized hydrogels for ectopic engineering of osteochondral tissues.
    Stüdle C; Vallmajó-Martín Q; Haumer A; Guerrero J; Centola M; Mehrkens A; Schaefer DJ; Ehrbar M; Barbero A; Martin I
    Biomaterials; 2018 Jul; 171():219-229. PubMed ID: 29705655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.