These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 31755232)

  • 1. Crayfish hemocyanin on chitin bone substitute scaffolds promotes the proliferation and osteogenic differentiation of human mesenchymal stem cells.
    Kruppke B; Farack J; Weil S; Aflalo ED; Poláková D; Sagi A; Hanke T
    J Biomed Mater Res A; 2020 Mar; 108(3):694-708. PubMed ID: 31755232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocyanin Modification of Chitosan Scaffolds with Calcium Phosphate Phases Increase the Osteoblast/Osteoclast Activity Ratio-A Co-Culture Study.
    Kruppke B; Heinemann C; Farack J; Weil S; Aflalo ED; Sagi A; Hanke T
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33036488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of wollastonite on proliferation and differentiation of human bone marrow-derived stromal cells in PHBV/wollastonite composite scaffolds.
    Li H; Zhai W; Chang J
    J Biomater Appl; 2009 Sep; 24(3):231-46. PubMed ID: 18987024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.
    Glazer L; Tom M; Weil S; Roth Z; Khalaila I; Mittelman B; Sagi A
    J Exp Biol; 2013 May; 216(Pt 10):1898-904. PubMed ID: 23393281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.
    Yang J; Cao C; Wang W; Tong X; Shi D; Wu F; Zheng Q; Guo C; Pan Z; Gao C; Wang J
    J Biomed Mater Res A; 2010 Mar; 92(3):817-29. PubMed ID: 19280635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold.
    Matta C; Szűcs-Somogyi C; Kon E; Robinson D; Neufeld T; Altschuler N; Berta A; Hangody L; Veréb Z; Zákány R
    Differentiation; 2019; 107():24-34. PubMed ID: 31152959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoinductivity of nanostructured hydroxyapatite-functionalized gelatin modulated by human and endogenous mesenchymal stromal cells.
    Della Bella E; Parrilli A; Bigi A; Panzavolta S; Amadori S; Giavaresi G; Martini L; Borsari V; Fini M
    J Biomed Mater Res A; 2018 Apr; 106(4):914-923. PubMed ID: 29143449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented β-TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA.
    Westhauser F; Karadjian M; Essers C; Senger AS; Hagmann S; Schmidmaier G; Moghaddam A
    PLoS One; 2019; 14(2):e0212799. PubMed ID: 30811492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes.
    Ge Z; Baguenard S; Lim LY; Wee A; Khor E
    Biomaterials; 2004 Mar; 25(6):1049-58. PubMed ID: 14615170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro.
    Norouz F; Halabian R; Salimi A; Ghollasi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway.
    Lu B; Zhu DY; Yin JH; Xu H; Zhang CQ; Ke QF; Gao YS; Guo YP
    Biofabrication; 2019 Mar; 11(2):025012. PubMed ID: 30754024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development.
    Zhao F; Grayson WL; Ma T; Bunnell B; Lu WW
    Biomaterials; 2006 Mar; 27(9):1859-67. PubMed ID: 16225916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Fiber Alignment and Coculture with Endothelial Cells on Osteogenic Differentiation of Mesenchymal Stromal Cells.
    Yao T; Chen H; Baker MB; Moroni L
    Tissue Eng Part C Methods; 2020 Jan; 26(1):11-22. PubMed ID: 31774033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Favorable angiogenic properties of the borosilicate bioactive glass 0106-B1 result in enhanced in vivo osteoid formation compared to 45S5 Bioglass.
    Westhauser F; Widholz B; Nawaz Q; Tsitlakidis S; Hagmann S; Moghaddam A; Boccaccini AR
    Biomater Sci; 2019 Dec; 7(12):5161-5176. PubMed ID: 31584047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration.
    Xing F; Chi Z; Yang R; Xu D; Cui J; Huang Y; Zhou C; Liu C
    Int J Biol Macromol; 2021 Aug; 184():170-180. PubMed ID: 34052273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells.
    Pereira-Junior OC; Rahal SC; Lima-Neto JF; Landim-Alvarenga Fda C; Monteiro FO
    Acta Cir Bras; 2013 May; 28(5):353-60. PubMed ID: 23702937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.
    Hou Y; Xie W; Achazi K; Cuellar-Camacho JL; Melzig MF; Chen W; Haag R
    Acta Biomater; 2018 Sep; 77():28-37. PubMed ID: 29981495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering.
    Torres-Rendon JG; Femmer T; De Laporte L; Tigges T; Rahimi K; Gremse F; Zafarnia S; Lederle W; Ifuku S; Wessling M; Hardy JG; Walther A
    Adv Mater; 2015 May; 27(19):2989-95. PubMed ID: 25833165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.