These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31755269)

  • 21. Water Durable Electride Y₅Si₃: Electronic Structure and Catalytic Activity for Ammonia Synthesis.
    Lu Y; Li J; Tada T; Toda Y; Ueda S; Yokoyama T; Kitano M; Hosono H
    J Am Chem Soc; 2016 Mar; 138(12):3970-3. PubMed ID: 26972257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transition and Alkali Metal Complex Ternary Amides for Ammonia Synthesis and Decomposition.
    Cao H; Guo J; Chang F; Pistidda C; Zhou W; Zhang X; Santoru A; Wu H; Schell N; Niewa R; Chen P; Klassen T; Dornheim M
    Chemistry; 2017 Jul; 23(41):9766-9771. PubMed ID: 28627715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vacancy-enabled N
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H
    Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane.
    Akbayrak S; Tonbul Y; Özkar S
    Dalton Trans; 2016 Jul; 45(27):10969-78. PubMed ID: 27302302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unique Catalytic Mechanism for Ru-Loaded Ternary Intermetallic Electrides for Ammonia Synthesis.
    Gong Y; Li H; Wu J; Song X; Yang X; Bao X; Han X; Kitano M; Wang J; Hosono H
    J Am Chem Soc; 2022 May; 144(19):8683-8692. PubMed ID: 35507518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of ammonia using sodium melt.
    Kawamura F; Taniguchi T
    Sci Rep; 2017 Sep; 7(1):11578. PubMed ID: 28912549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of ammonia directly from wet air using Sm(0.6)Ba(0.4)Fe(0.8)Cu(0.2)O(3-δ) as the catalyst.
    Lan R; Alkhazmi KA; Amar IA; Tao S
    Faraday Discuss; 2015; 182():353-63. PubMed ID: 26212655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst.
    Kammert J; Moon J; Cheng Y; Daemen L; Irle S; Fung V; Liu J; Page K; Ma X; Phaneuf V; Tong J; Ramirez-Cuesta AJ; Wu Z
    J Am Chem Soc; 2020 Apr; 142(16):7655-7667. PubMed ID: 32248688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Pressure Synthesis of Transition-Metal Oxyhydrides with Double-Perovskite Structures.
    Yajima T; Takahashi K; Nakajima H; Honda T; Ikeda K; Otomo T; Hiroi Z
    Inorg Chem; 2022 Jan; 61(4):2010-2016. PubMed ID: 35034444
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Temperature Synthesis of Titanium Oxynitride Nanoparticles.
    Jansen F; Hoffmann A; Henkel J; Rahimi K; Caumanns T; Kuehne AJC
    Nanomaterials (Basel); 2021 Mar; 11(4):. PubMed ID: 33810321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition-Metal-Free Barium Hydride Mediates Dinitrogen Fixation and Ammonia Synthesis.
    Guan Y; Liu C; Wang Q; Gao W; Hansen HA; Guo J; Vegge T; Chen P
    Angew Chem Int Ed Engl; 2022 Sep; 61(39):e202205805. PubMed ID: 35918291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low temperature ammonia synthesis by surface protonics over metal supported catalysts.
    Sekine Y
    Faraday Discuss; 2023 Jul; 243(0):179-197. PubMed ID: 37017083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles.
    Yang X; Nash J; Anibal J; Dunwell M; Kattel S; Stavitski E; Attenkofer K; Chen JG; Yan Y; Xu B
    J Am Chem Soc; 2018 Oct; 140(41):13387-13391. PubMed ID: 30244579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fe
    Han L; Gao M; Feng C; Shi L; Zhang D
    Environ Sci Technol; 2019 May; 53(10):5946-5956. PubMed ID: 31008590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Barium hydride activates Ni for ammonia synthesis catalysis.
    Gao W; Wang Q; Guan Y; Yan H; Guo J; Chen P
    Faraday Discuss; 2023 Jul; 243(0):27-37. PubMed ID: 37013703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced CH
    Li D; Li K; Xu R; Zhu X; Wei Y; Tian D; Cheng X; Wang H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19227-19241. PubMed ID: 31067022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoporous Palladium Hydride for Electrocatalytic N
    Xu W; Fan G; Chen J; Li J; Zhang L; Zhu S; Su X; Cheng F; Chen J
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3511-3516. PubMed ID: 31889387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SiO
    Chen M; Xiong R; Cui X; Wang Q; Liu X
    Langmuir; 2019 Jan; 35(3):671-677. PubMed ID: 30607962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Formation of Surface Lithium-Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures.
    Wang P; Xie H; Guo J; Zhao Z; Kong X; Gao W; Chang F; He T; Wu G; Chen M; Jiang L; Chen P
    Angew Chem Int Ed Engl; 2017 Jul; 56(30):8716-8720. PubMed ID: 28556376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis.
    Yue C; Qiu L; Trudeau M; Antonelli D
    Inorg Chem; 2007 Jun; 46(12):5084-92. PubMed ID: 17497850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.