These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31755269)

  • 41. Efficient ammonia synthesis over a Ru/La
    Ogura Y; Sato K; Miyahara SI; Kawano Y; Toriyama T; Yamamoto T; Matsumura S; Hosokawa S; Nagaoka K
    Chem Sci; 2018 Feb; 9(8):2230-2237. PubMed ID: 29719696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrocatalytic synthesis of ammonia by surface proton hopping.
    Manabe R; Nakatsubo H; Gondo A; Murakami K; Ogo S; Tsuneki H; Ikeda M; Ishikawa A; Nakai H; Sekine Y
    Chem Sci; 2017 Aug; 8(8):5434-5439. PubMed ID: 28970922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prediction of a low-temperature N
    Martirez JMP; Carter EA
    Sci Adv; 2017 Dec; 3(12):eaao4710. PubMed ID: 29291247
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of Active Sites and Elucidation of the Reaction Mechanism of the Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride.
    Yang X; Kattel S; Nash J; Chang X; Lee JH; Yan Y; Chen JG; Xu B
    Angew Chem Int Ed Engl; 2019 Sep; 58(39):13768-13772. PubMed ID: 31283868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergistic Catalysis of the Synthesis of Ammonia with Co-Based Catalysts and Plasma: From Nanoparticles to a Single Atom.
    Li X; Jiao Y; Cui Y; Dai C; Ren P; Song C; Ma X
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52498-52507. PubMed ID: 34714629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance.
    Huang X; Xiao X; Shao J; Zhai B; Fan X; Cheng C; Li S; Ge H; Wang Q; Chen L
    Nanoscale; 2016 Aug; 8(31):14898-908. PubMed ID: 27464228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Catalytic removal of phenol from gas streams by perovskite-type catalysts.
    Chen DL; Pan KL; Chang MB
    J Environ Sci (China); 2017 Jun; 56():131-139. PubMed ID: 28571848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of VOCs from gas streams with double perovskite-type catalysts.
    Pan KL; Pan GT; Chong S; Chang MB
    J Environ Sci (China); 2018 Jul; 69():205-216. PubMed ID: 29941256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron and oxygen transfer in polyoxometalate, H(5)PV(2)Mo(10)O(40), catalyzed oxidation of aromatic and alkyl aromatic compounds: evidence for aerobic Mars-van Krevelen-type reactions in the liquid homogeneous phase.
    Khenkin AM; Weiner L; Wang Y; Neumann R
    J Am Chem Soc; 2001 Sep; 123(35):8531-42. PubMed ID: 11525661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantifying the Contribution of Hot Electrons in Photothermal Catalysis: A Case Study of Ammonia Synthesis over Carbon-supported Ru Catalyst.
    Bian X; Zhao Y; Waterhouse GIN; Miao Y; Zhou C; Wu LZ; Zhang T
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304452. PubMed ID: 37083180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Co nanoparticles supported on mixed magnesium-lanthanum oxides: effect of calcium and barium addition on ammonia synthesis catalyst performance.
    Ronduda H; Zybert M; Patkowski W; Moszyński D; Albrecht A; Sobczak K; Małolepszy A; Raróg-Pilecka W
    RSC Adv; 2023 Jan; 13(7):4787-4802. PubMed ID: 36760280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanistic Investigation into the Effect of Sulfuration on the FeW Catalysts for the Selective Catalytic Reduction of NO
    Wang H; Qu Z; Dong S; Tang C
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7017-7028. PubMed ID: 28177220
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Favorable Role of the Metal-Support Perimeter Region in Electrochemical NH
    Ishikawa A; Murase F; Tateyama Y; Otomo J
    ACS Omega; 2022 Aug; 7(30):26107-26115. PubMed ID: 35936417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Room temperature formation of ammonia by oxidizing hydrogenated cerium nanoparticles in the air.
    Zhang Y; Liu T; Wang Z; Li Y; Li X
    J Nanosci Nanotechnol; 2006 Mar; 6(3):813-7. PubMed ID: 16573143
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alkali and Alkaline Earth Hydrides-Driven N
    Chang F; Guan Y; Chang X; Guo J; Wang P; Gao W; Wu G; Zheng J; Li X; Chen P
    J Am Chem Soc; 2018 Nov; 140(44):14799-14806. PubMed ID: 30351925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity.
    Chang H; Jong MT; Wang C; Qu R; Du Y; Li J; Hao J
    Environ Sci Technol; 2013 Oct; 47(20):11692-9. PubMed ID: 24024774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intercalation of nanostructured CeO
    Duan X; Wen Z; Zhao Y; Zhou J; Fang H; Cao Y; Jiang L; Ye L; Yuan Y
    Nanoscale; 2018 Feb; 10(7):3331-3341. PubMed ID: 29384541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The balance of acidity and redox capability over modified CeO
    Lian Z; Shan W; Wang M; He H; Feng Q
    J Environ Sci (China); 2019 May; 79():273-279. PubMed ID: 30784451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.