BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31755487)

  • 1. Straightforward preparation of fluorinated covalent triazine frameworks with significantly enhanced carbon dioxide and hydrogen adsorption capacities.
    Wang G; Onyshchenko Y; De Geyter N; Morent R; Leus K; Van Der Voort P
    Dalton Trans; 2019 Dec; 48(47):17612-17619. PubMed ID: 31755487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly Designed Covalent Triazine Framework Based on Novel N-Heteroaromatic Building Blocks for Efficient CO
    Wang G; Leus K; Zhao S; Van Der Voort P
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1244-1249. PubMed ID: 29235840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture.
    Wang K; Huang H; Liu D; Wang C; Li J; Zhong C
    Environ Sci Technol; 2016 May; 50(9):4869-76. PubMed ID: 27081869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastable Covalent Triazine Organic Framework Based on Anthracene Moiety as Platform for High-Performance Carbon Dioxide Adsorption and Supercapacitors.
    Mohamed MG; Sharma SU; Liu NY; Mansoure TH; Samy MM; Chaganti SV; Chang YL; Lee JT; Kuo SW
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks.
    Du J; Liu Y; Krishna R; Yu Y; Cui Y; Wang S; Liu Y; Song X; Liang Z
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26678-26686. PubMed ID: 30020769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage.
    Lee YJ; Talapaneni SN; Coskun A
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30679-30685. PubMed ID: 28782930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Synthesis of Microporous Bicarbazole-Based Covalent Triazine Frameworks for High-Performance Energy Storage and Carbon Dioxide Uptake.
    Mohamed MG; El-Mahdy AFM; Ahmed MMM; Kuo SW
    Chempluschem; 2019 Nov; 84(11):1767-1774. PubMed ID: 31943884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO
    Xu G; Zhu Y; Xie W; Zhang S; Yao C; Xu Y
    Chem Asian J; 2019 Oct; 14(19):3259-3263. PubMed ID: 31441220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized Covalent Triazine Frameworks for Effective CO
    Fu Y; Wang Z; Li S; He X; Pan C; Yan J; Yu G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36002-36009. PubMed ID: 30272437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance.
    Zhu X; Tian C; Veith GM; Abney CW; Dehaudt J; Dai S
    J Am Chem Soc; 2016 Sep; 138(36):11497-500. PubMed ID: 27584153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO
    Krishnaraj C; Jena HS; Lecoeuvre F; Leus K; Van Der Voort P
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipyridinium-Based Ionic Covalent Triazine Frameworks for CO
    Zhu H; Lin W; Li Q; Hu Y; Guo S; Wang C; Yan F
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8614-8621. PubMed ID: 31983201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Control and Multifunctional Properties of Fluorescent Covalent Triazine-Based Frameworks.
    Wang X; Zhang C; Zhao Y; Ren S; Jiang JX
    Macromol Rapid Commun; 2016 Feb; 37(4):323-9. PubMed ID: 26697782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO
    Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P
    Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-rich chitosan-derived porous carbon materials for efficient CO
    Min H; Zhang K; Guo Z; Chi F; Fu L; Li B; Qiao X; Wang S; Cao S; Wang B; Ma Q
    Front Chem; 2023; 11():1333475. PubMed ID: 38156020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture.
    Cai J; Qi J; Yang C; Zhao X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3703-11. PubMed ID: 24548215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent Triazine Frameworks Based on the First
    Wessely ID; Schade AM; Dey S; Bhunia A; Nuhnen A; Janiak C; Bräse S
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34200941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triptycene-based microporous polymer with pending tetrazole moieties for CO2 -capture application.
    Liu L; Zhang J
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1833-7. PubMed ID: 24214288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.