BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31755508)

  • 1. The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response.
    Cheng J; Zhang Q; Fan S; Zhang A; Liu B; Hong Y; Guo J; Cui D; Song J
    Nanoscale; 2019 Dec; 11(47):22849-22859. PubMed ID: 31755508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro.
    Bancos S; Stevens DL; Tyner KM
    Int J Nanomedicine; 2015; 10():183-206. PubMed ID: 25565813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CaCO
    Yang S; Zhang Y; Lu S; Yang L; Yu S; Yang H
    ACS Appl Bio Mater; 2021 Apr; 4(4):3214-3223. PubMed ID: 35014408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of morphology, shell composition and protein corona formation in Au/Fe
    He L; Ma K; Liu X; Li H; Zhang L; Tian M; Tian Z; Qiang Y; Cui Y; Hua K
    J Mater Chem B; 2021 Aug; 9(32):6387-6395. PubMed ID: 34309613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of size and surface coating of gold nanoparticles on inflammatory activation of macrophages.
    Chen X; Gao C
    Colloids Surf B Biointerfaces; 2017 Dec; 160():372-380. PubMed ID: 28963958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research.
    Miao X; Leng X; Zhang Q
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28178185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential response of macrophages to core-shell Fe3O4@Au nanoparticles and nanostars.
    Xia W; Song HM; Wei Q; Wei A
    Nanoscale; 2012 Nov; 4(22):7143-8. PubMed ID: 23069807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of RAW264.7 macrophages to water-dispersible gold and silver nanoparticles stabilized by metal-carbon σ-bonds.
    Hashimoto M; Toshima H; Yonezawa T; Kawai K; Narushima T; Kaga M; Endo K
    J Biomed Mater Res A; 2014 Jun; 102(6):1838-49. PubMed ID: 23784947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyaniline-Based Glyco-Condensation on Au Nanoparticles Enhances Immunotherapy in Lung Cancer.
    Su WP; Chang LC; Song WH; Yang LX; Wang LC; Chia ZC; Chin YC; Shan YS; Huang CC; Yeh CS
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24144-24159. PubMed ID: 35579575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs.
    Nold P; Hartmann R; Feliu N; Kantner K; Gamal M; Pelaz B; Hühn J; Sun X; Jungebluth P; Del Pino P; Hackstein H; Macchiarini P; Parak WJ; Brendel C
    J Nanobiotechnology; 2017 Mar; 15(1):24. PubMed ID: 28356160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling.
    Jin R; Liu L; Zhu W; Li D; Yang L; Duan J; Cai Z; Nie Y; Zhang Y; Gong Q; Song B; Wen L; Anderson JM; Ai H
    Biomaterials; 2019 May; 203():23-30. PubMed ID: 30851490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-functional core-shell Fe
    S R; M P
    Colloids Surf B Biointerfaces; 2019 Feb; 174():252-259. PubMed ID: 30469046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Testing of Modular Dual-Modality Nanoparticles for Magnetic Resonance and Multispectral Photoacoustic Imaging.
    Bogdanov AA; Dixon AJ; Gupta S; Zhang L; Zheng S; Shazeeb MS; Zhang S; Klibanov AL
    Bioconjug Chem; 2016 Feb; 27(2):383-90. PubMed ID: 26603129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions.
    Mendes RG; Koch B; Bachmatiuk A; El-Gendy AA; Krupskaya Y; Springer A; Klingeler R; Schmidt O; Büchner B; Sanchez S; Rümmeli MH
    Biochim Biophys Acta; 2014 Jan; 1840(1):160-9. PubMed ID: 24007898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?
    Park S; Woodhall J; Ma G; Veinot JG; Boxall AB
    Environ Toxicol Chem; 2015 Apr; 34(4):850-9. PubMed ID: 25556899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptides conjugated to gold nanoparticles induce macrophage activation.
    Bastús NG; Sánchez-Tilló E; Pujals S; Farrera C; Kogan MJ; Giralt E; Celada A; Lloberas J; Puntes V
    Mol Immunol; 2009 Feb; 46(4):743-8. PubMed ID: 18996597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway.
    Gu Z; Liu T; Tang J; Yang Y; Song H; Tuong ZK; Fu J; Yu C
    J Am Chem Soc; 2019 Apr; 141(15):6122-6126. PubMed ID: 30933483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus.
    Yu B; Wang Z; Almutairi L; Huang S; Kim MH
    Nanomedicine; 2020 Feb; 24():102158. PubMed ID: 31982615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators.
    Zhang Q; Hitchins VM; Schrand AM; Hussain SM; Goering PL
    Nanotoxicology; 2011 Sep; 5(3):284-95. PubMed ID: 20849214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity and cytokine release in rat hepatocytes, C3A cells and macrophages exposed to gold nanoparticles--effect of biological dispersion media or corona.
    Brown DM; Johnston H; Gubbins E; Stone V
    J Biomed Nanotechnol; 2014 Nov; 10(11):3416-29. PubMed ID: 26000400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.