These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31755683)

  • 21. Spontaneous structural transition and crystal formation in minimal supramolecular polymer model.
    Fichman G; Guterman T; Damron J; Adler-Abramovich L; Schmidt J; Kesselman E; Shimon LJ; Ramamoorthy A; Talmon Y; Gazit E
    Sci Adv; 2016 Feb; 2(2):e1500827. PubMed ID: 26933679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noncovalent Aqua Materials Based on Perylene Diimides.
    Krieg E; Niazov-Elkan A; Cohen E; Tsarfati Y; Rybtchinski B
    Acc Chem Res; 2019 Sep; 52(9):2634-2646. PubMed ID: 31478643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulating the Electromechanical Response of Bio-Inspired Amino Acid-Based Architectures through Supramolecular Co-Assembly.
    Ji W; Xue B; Yin Y; Guerin S; Wang Y; Zhang L; Cheng Y; Shimon LJW; Chen Y; Thompson D; Yang R; Cao Y; Wang W; Cai K; Gazit E
    J Am Chem Soc; 2022 Oct; 144(40):18375-18386. PubMed ID: 36164777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.
    Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E
    ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures.
    Hatip Koc M; Cinar Ciftci G; Baday S; Castelletto V; Hamley IW; Guler MO
    Langmuir; 2017 Aug; 33(32):7947-7956. PubMed ID: 28753315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Homochiral, helical supramolecular metal-organic frameworks organized by strong π · · · π stacking interactions: single-crystal to single-crystal transformations in closely packed solids.
    Reger DL; Horger JJ; Smith MD; Long GJ; Grandjean F
    Inorg Chem; 2011 Jan; 50(2):686-704. PubMed ID: 21141941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diverse Role of Solvents in Controlling Supramolecular Chirality.
    Xue S; Xing P; Zhang J; Zeng Y; Zhao Y
    Chemistry; 2019 Jun; 25(31):7426-7437. PubMed ID: 30791175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Approaching Materials with Atomic Precision Using Supramolecular Cluster Assemblies.
    Chakraborty P; Nag A; Chakraborty A; Pradeep T
    Acc Chem Res; 2019 Jan; 52(1):2-11. PubMed ID: 30507167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Underlying Mechanisms for the Modulation of Self-Assembly and the Intrinsic Fluorescent Properties of Amino Acid-Functionalized Gold Nanoparticles.
    De SK; Maity A; Chakraborty A
    Langmuir; 2021 Apr; 37(16):5022-5033. PubMed ID: 33856214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Halogen Bond: An Emerging Supramolecular Tool in the Design of Functional Mesomorphic Materials.
    Wang H; Bisoyi HK; Urbas AM; Bunning TJ; Li Q
    Chemistry; 2019 Jan; 25(6):1369-1378. PubMed ID: 30076632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aromatic Zipper Topology Dictates Water-Responsive Actuation in Phenylalanine-Based Crystals.
    Sheehan FK; Wang H; Podbevšek D; Naranjo E; Rivera-Cancel J; Moran C; Ulijn RV; Chen X
    Small; 2023 Jul; 19(27):e2207773. PubMed ID: 36971275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly and biological activities of ionic liquid crystals derived from aromatic amino acids.
    Neidhardt MM; Schmitt K; Baro A; Schneider C; Bilitewski U; Laschat S
    Phys Chem Chem Phys; 2018 Aug; 20(31):20371-20381. PubMed ID: 30043016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Assembly Evolution of
    Xue S; Zhang N; Hu X; Zeng Y; Zhang J; Xing P; Zhao Y
    J Phys Chem Lett; 2020 Feb; 11(4):1490-1496. PubMed ID: 32023059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular structure, symmetry, and shape as design elements in the fabrication of molecular crystals for second harmonic generation and the role of molecules-in-materials.
    Radhakrishnan TP
    Acc Chem Res; 2008 Mar; 41(3):367-76. PubMed ID: 18260652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimalist Prion-Inspired Polar Self-Assembling Peptides.
    Díaz-Caballero M; Navarro S; Fuentes I; Teixidor F; Ventura S
    ACS Nano; 2018 Jun; 12(6):5394-5407. PubMed ID: 29812908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonporous Adaptive Crystals of Pillararenes.
    Jie K; Zhou Y; Li E; Huang F
    Acc Chem Res; 2018 Sep; 51(9):2064-2072. PubMed ID: 30011181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.