These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31755864)

  • 1. Cryo-EM structure of the KvAP channel reveals a non-domain-swapped voltage sensor topology.
    Tao X; MacKinnon R
    Elife; 2019 Nov; 8():. PubMed ID: 31755864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.
    Bruhova I; Zhorov BS
    Biophys J; 2005 Aug; 89(2):1020-9. PubMed ID: 15908577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gating model for the archeal voltage-dependent K(+) channel KvAP in DPhPC and POPE:POPG decane lipid bilayers.
    Schmidt D; Cross SR; MacKinnon R
    J Mol Biol; 2009 Jul; 390(5):902-12. PubMed ID: 19481093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage sensor ring in a native structure of a membrane-embedded potassium channel.
    Shi L; Zheng H; Zheng H; Borkowski BA; Shi D; Gonen T; Jiang QX
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3369-74. PubMed ID: 23401554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the voltage-sensor toxin receptor on KvAP.
    Ruta V; MacKinnon R
    Biochemistry; 2004 Aug; 43(31):10071-9. PubMed ID: 15287735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation.
    Jiang QX; Wang DN; MacKinnon R
    Nature; 2004 Aug; 430(7001):806-10. PubMed ID: 15306816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel.
    Zhao J; Blunck R
    Elife; 2016 Oct; 5():. PubMed ID: 27710769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP.
    Butterwick JA; MacKinnon R
    J Mol Biol; 2010 Nov; 403(4):591-606. PubMed ID: 20851706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-EM structure of the open high-conductance Ca
    Tao X; Hite RK; MacKinnon R
    Nature; 2017 Jan; 541(7635):46-51. PubMed ID: 27974795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain.
    Haddad GA; Blunck R
    J Gen Physiol; 2011 May; 137(5):455-72. PubMed ID: 21518834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in LPPG Micelles.
    Chen H; Pan J; Gandhi DM; Dockendorff C; Cui Q; Chanda B; Henzler-Wildman KA
    Biophys J; 2019 Jul; 117(2):388-398. PubMed ID: 31301804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncanonical mechanism of voltage sensor coupling to pore revealed by tandem dimers of Shaker.
    Carvalho-de-Souza JL; Bezanilla F
    Nat Commun; 2019 Aug; 10(1):3584. PubMed ID: 31395867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling stabilizers open K
    SilverÄ Ejneby M; Wallner B; Elinder F
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):27016-27021. PubMed ID: 33051293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiversity of voltage sensor domain proteins.
    Okamura Y
    Pflugers Arch; 2007 Jun; 454(3):361-71. PubMed ID: 17347852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The twisted ion-permeation pathway of a resting voltage-sensing domain.
    Tombola F; Pathak MM; Gorostiza P; Isacoff EY
    Nature; 2007 Feb; 445(7127):546-9. PubMed ID: 17187057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of the voltage-sensor domain and voltage-gated K+-channel proteins vectorially oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry.
    Gupta S; Dura JA; Freites JA; Tobias DJ; Blasie JK
    Langmuir; 2012 Jul; 28(28):10504-20. PubMed ID: 22686684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.
    Li Q; Wanderling S; Sompornpisut P; Perozo E
    Nat Struct Mol Biol; 2014 Feb; 21(2):160-6. PubMed ID: 24413055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane.
    Lee SY; Lee A; Chen J; MacKinnon R
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15441-6. PubMed ID: 16223877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach.
    Das A; Raghuraman H
    Biochim Biophys Acta Biomembr; 2021 May; 1863(5):183568. PubMed ID: 33529577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.