These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31755875)

  • 1. Physiological mechanism of improved tolerance of
    Gu H; Zhu Y; Peng Y; Liang X; Liu X; Shao L; Xu Y; Xu Z; Liu R; Li J
    Biotechnol Biofuels; 2019; 12():268. PubMed ID: 31755875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue.
    Gu H; Zhang J; Bao J
    Biotechnol Bioeng; 2015 Sep; 112(9):1770-82. PubMed ID: 25851269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde.
    Fletcher E; Gao K; Mercurio K; Ali M; Baetz K
    Metab Eng; 2019 Mar; 52():98-109. PubMed ID: 30471359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues.
    Gu H; Zhang J; Bao J
    Bioresour Technol; 2014 Apr; 157():6-13. PubMed ID: 24518544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation.
    Nielsen F; Tomás-Pejó E; Olsson L; Wallberg O
    Biotechnol Biofuels; 2015; 8():219. PubMed ID: 26697108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass.
    Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB
    Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.
    Sanda T; Hasunuma T; Matsuda F; Kondo A
    Bioresour Technol; 2011 Sep; 102(17):7917-24. PubMed ID: 21704512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae.
    van Dijk M; Erdei B; Galbe M; Nygård Y; Olsson L
    Bioresour Technol; 2019 Nov; 292():121922. PubMed ID: 31398543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses.
    Menegon YA; Gross J; Jacobus AP
    Curr Genet; 2022 Aug; 68(3-4):319-342. PubMed ID: 35362784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds.
    Ibraheem O; Ndimba BK
    Int J Biol Sci; 2013; 9(6):598-612. PubMed ID: 23847442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
    Kurosawa K; Laser J; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridization and adaptive evolution of diverse
    Peris D; Moriarty RV; Alexander WG; Baker E; Sylvester K; Sardi M; Langdon QK; Libkind D; Wang QM; Bai FY; Leducq JB; Charron G; Landry CR; Sampaio JP; Gonçalves P; Hyma KE; Fay JC; Sato TK; Hittinger CT
    Biotechnol Biofuels; 2017; 10():78. PubMed ID: 28360936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae.
    Narayanan V; Sànchez I Nogué V; van Niel EWJ; Gorwa-Grauslund MF
    AMB Express; 2016 Dec; 6(1):59. PubMed ID: 27566648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol.
    Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H
    J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol.
    Park H; Jeong D; Shin M; Kwak S; Oh EJ; Ko JK; Kim SR
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3245-3252. PubMed ID: 32076775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH.
    Sànchez i Nogué V; Narayanan V; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7517-25. PubMed ID: 23872959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into cell robustness against lignocellulosic inhibitors and insoluble solids in bioethanol production processes.
    Moreno AD; González-Fernández C; Tomás-Pejó E
    Sci Rep; 2022 Jan; 12(1):557. PubMed ID: 35017613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.