BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31755900)

  • 1. NeoFuse: predicting fusion neoantigens from RNA sequencing data.
    Fotakis G; Rieder D; Haider M; Trajanoski Z; Finotello F
    Bioinformatics; 2020 Apr; 36(7):2260-2261. PubMed ID: 31755900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. nextNEOpi: a comprehensive pipeline for computational neoantigen prediction.
    Rieder D; Fotakis G; Ausserhofer M; René G; Paster W; Trajanoski Z; Finotello F
    Bioinformatics; 2022 Jan; 38(4):1131-1132. PubMed ID: 34788790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ScanNeo: identifying indel-derived neoantigens using RNA-Seq data.
    Wang TY; Wang L; Alam SK; Hoeppner LH; Yang R
    Bioinformatics; 2019 Oct; 35(20):4159-4161. PubMed ID: 30887025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens.
    Bais P; Namburi S; Gatti DM; Zhang X; Chuang JH
    Bioinformatics; 2017 Oct; 33(19):3110-3112. PubMed ID: 28605406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing.
    Karasaki T; Nagayama K; Kuwano H; Nitadori JI; Sato M; Anraku M; Hosoi A; Matsushita H; Takazawa M; Ohara O; Nakajima J; Kakimi K
    Cancer Sci; 2017 Feb; 108(2):170-177. PubMed ID: 27960040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TIminer: NGS data mining pipeline for cancer immunology and immunotherapy.
    Tappeiner E; Finotello F; Charoentong P; Mayer C; Rieder D; Trajanoski Z
    Bioinformatics; 2017 Oct; 33(19):3140-3141. PubMed ID: 28633385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery.
    Zhang J; Mardis ER; Maher CA
    Bioinformatics; 2017 Feb; 33(4):555-557. PubMed ID: 27797777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
    Han BW; Wang W; Zamore PD; Weng Z
    Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ScanNeo2: a comprehensive workflow for neoantigen detection and immunogenicity prediction from diverse genomic and transcriptomic alterations.
    Schäfer RA; Guo Q; Yang R
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37882750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation position is an important determinant for predicting cancer neoantigens.
    Capietto AH; Jhunjhunwala S; Pollock SB; Lupardus P; Wong J; Hänsch L; Cevallos J; Chestnut Y; Fernandez A; Lounsbury N; Nozawa T; Singh M; Fan Z; de la Cruz CC; Phung QT; Taraborrelli L; Haley B; Lill JR; Mellman I; Bourgon R; Delamarre L
    J Exp Med; 2020 Apr; 217(4):. PubMed ID: 31940002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ArtiFuse-computational validation of fusion gene detection tools without relying on simulated reads.
    Sorn P; Holtsträter C; Löwer M; Sahin U; Weber D
    Bioinformatics; 2020 Jan; 36(2):373-379. PubMed ID: 31373612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TSAFinder: exhaustive tumor-specific antigen detection with RNAseq.
    Sharpnack MF; Johnson TS; Chalkley R; Han Z; Carbone D; Huang K; He K
    Bioinformatics; 2022 Apr; 38(9):2422-2427. PubMed ID: 35191489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neoantigen prediction in human breast cancer using RNA sequencing data.
    Hashimoto S; Noguchi E; Bando H; Miyadera H; Morii W; Nakamura T; Hara H
    Cancer Sci; 2021 Jan; 112(1):465-475. PubMed ID: 33155341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity.
    Wu J; Li J; Chen S; Zhou Z
    Methods Mol Biol; 2024; 2809():237-244. PubMed ID: 38907901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LENS: Landscape of Effective Neoantigens Software.
    Vensko SP; Olsen K; Bortone D; Smith CC; Chai S; Beckabir W; Fini M; Jadi O; Rubinsteyn A; Vincent BG
    Bioinformatics; 2023 May; 39(6):. PubMed ID: 37184881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holistic optimization of an RNA-seq workflow for multi-threaded environments.
    Hung LH; Lloyd W; Agumbe Sridhar R; Athmalingam Ravishankar SD; Xiong Y; Sobie E; Yeung KY
    Bioinformatics; 2019 Oct; 35(20):4173-4175. PubMed ID: 30859176
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Zhang Z; Zhou C; Tang L; Gong Y; Wei Z; Zhang G; Wang F; Liu Q; Yu J
    Aging (Albany NY); 2020 Jul; 12(14):14633-14648. PubMed ID: 32697765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity.
    Liu G; Li D; Li Z; Qiu S; Li W; Chao CC; Yang N; Li H; Cheng Z; Song X; Cheng L; Zhang X; Wang J; Yang H; Ma K; Hou Y; Li B
    Gigascience; 2017 May; 6(5):1-11. PubMed ID: 28327987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens.
    Hundal J; Carreno BM; Petti AA; Linette GP; Griffith OL; Mardis ER; Griffith M
    Genome Med; 2016 Jan; 8(1):11. PubMed ID: 26825632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curse: building expression atlases and co-expression networks from public RNA-Seq data.
    Vaneechoutte D; Vandepoele K
    Bioinformatics; 2019 Aug; 35(16):2880-2881. PubMed ID: 30590391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.