These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 31756085)
1. High-Mobility Hydrogenated Fluorine-Doped Indium Oxide Film for Passivating Contacts c-Si Solar Cells. Han C; Mazzarella L; Zhao Y; Yang G; Procel P; Tijssen M; Montes A; Spitaleri L; Gulino A; Zhang X; Isabella O; Zeman M ACS Appl Mater Interfaces; 2019 Dec; 11(49):45586-45595. PubMed ID: 31756085 [TBL] [Abstract][Full Text] [Related]
2. Development of high conducting phosphorous doped nanocrystalline thin silicon films for silicon heterojunction solar cells application. Bhattacharya S; Pandey A; Alam S; Komarala VK Nanotechnology; 2024 May; 35(32):. PubMed ID: 38710179 [TBL] [Abstract][Full Text] [Related]
3. Development of Conductive SiC Qiu K; Pomaska M; Li S; Lambertz A; Duan W; Gad A; Geitner M; Brugger J; Liang Z; Shen H; Finger F; Rau U; Ding K ACS Appl Mater Interfaces; 2020 Jul; 12(26):29986-29992. PubMed ID: 32501671 [TBL] [Abstract][Full Text] [Related]
4. Solution-Doped Polysilicon Passivating Contacts for Silicon Solar Cells. Yang X; Kang J; Liu W; Zhang X; De Wolf S ACS Appl Mater Interfaces; 2021 Feb; 13(7):8455-8460. PubMed ID: 33590751 [TBL] [Abstract][Full Text] [Related]
5. Correction to "High-Mobility Hydrogenated Fluorine-Doped Indium Oxide Film for Passivating Contacts c-Si Solar Cells". Han C; Mazzarella L; Zhao Y; Yang G; Procel P; Tijssen M; Montes A; Spitaleri L; Gulino A; Zhang X; Isabella O; Zeman M ACS Appl Mater Interfaces; 2021 Mar; 13(10):12636. PubMed ID: 33660505 [No Abstract] [Full Text] [Related]
6. High-Mobility In Jiang Y; Feurer T; Carron R; Sevilla GT; Moser T; Pisoni S; Erni R; Rossell MD; Ochoa M; Hertwig R; Tiwari AN; Fu F ACS Nano; 2020 Jun; 14(6):7502-7512. PubMed ID: 32459466 [TBL] [Abstract][Full Text] [Related]
7. In Situ-Doped Silicon Thin Films for Passivating Contacts by Hot-Wire Chemical Vapor Deposition with a High Deposition Rate of 42 nm/min. Li S; Pomaska M; Hoß J; Lossen J; Ziegner M; Hong R; Finger F; Rau U; Ding K ACS Appl Mater Interfaces; 2019 Aug; 11(33):30493-30499. PubMed ID: 31361110 [TBL] [Abstract][Full Text] [Related]
8. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition. Macco B; Knoops HC; Kessels WM ACS Appl Mater Interfaces; 2015 Aug; 7(30):16723-9. PubMed ID: 26168056 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the Optoelectronic Properties of Ti-doped Indium Tin Oxide Thin Film. Pu NW; Liu WS; Cheng HM; Hu HC; Hsieh WT; Yu HW; Liang SC Materials (Basel); 2015 Sep; 8(9):6471-6481. PubMed ID: 28793575 [No Abstract] [Full Text] [Related]
10. Cerium-Doped Indium Oxide as a Top Electrode of Semitransparent Perovskite Solar Cells. Zhang L; Che Z; Shang J; Wang Q; Cao M; Zhou Y; Zhou Y; Liu F ACS Appl Mater Interfaces; 2023 Mar; 15(8):10838-10846. PubMed ID: 36802466 [TBL] [Abstract][Full Text] [Related]
11. Efficient Near-Infrared PbS Quantum Dot Solar Cells Employing Hydrogenated In Ge C; Yang E; Zhao X; Yuan C; Li S; Dong C; Ruan Y; Fu L; He Y; Zeng X; Song H; Hu B; Chen C; Tang J Small; 2022 Nov; 18(44):e2203677. PubMed ID: 36148851 [TBL] [Abstract][Full Text] [Related]
12. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma. Hsieh PY; Lee CY; Tai NH ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945 [TBL] [Abstract][Full Text] [Related]
13. Role of SiN Wang FH; Kuo HH; Yang CF; Liu MC Materials (Basel); 2014 Feb; 7(2):948-962. PubMed ID: 28788494 [TBL] [Abstract][Full Text] [Related]
14. A Review: Application of Doped Hydrogenated Nanocrystalline Silicon Oxide in High Efficiency Solar Cell Devices. Qiu D; Lambertz A; Duan W; Mazzarella L; Wagner P; Morales-Vilches AB; Yang G; Procel P; Isabella O; Stannowski B; Ding K Adv Sci (Weinh); 2024 Sep; 11(35):e2403728. PubMed ID: 39023199 [TBL] [Abstract][Full Text] [Related]
15. Development and Characterization of N Libraro S; Bannenberg LJ; Famprikis T; Reyes D; Hurni J; Genc E; Ballif C; Hessler-Wyser A; Haug FJ; Morisset A ACS Appl Mater Interfaces; 2024 Sep; 16(36):47931-47943. PubMed ID: 39215382 [TBL] [Abstract][Full Text] [Related]
16. 15% Efficiency Ultrathin Silicon Solar Cells with Fluorine-Doped Titanium Oxide and Chemically Tailored Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Asymmetric Heterocontact. He J; Hossain MA; Lin H; Wang W; Karuturi SK; Hoex B; Ye J; Gao P; Bullock J; Wan Y ACS Nano; 2019 Jun; 13(6):6356-6362. PubMed ID: 31017761 [TBL] [Abstract][Full Text] [Related]
17. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells. Park J; Shin C; Park H; Jung J; Lee YJ; Bong S; Dao VA; Balaji N; Yi J J Nanosci Nanotechnol; 2015 Mar; 15(3):2241-6. PubMed ID: 26413646 [TBL] [Abstract][Full Text] [Related]
18. Insights into the Si─H Bonding Configuration at the Amorphous/Crystalline Silicon Interface of Silicon Heterojunction Solar Cells by Raman and FTIR Spectroscopy. Fischer B; Lambertz A; Nuys M; Beyer W; Duan W; Bittkau K; Ding K; Rau U Adv Mater; 2023 Nov; 35(47):e2306351. PubMed ID: 37708374 [TBL] [Abstract][Full Text] [Related]
19. Single Crystalline Transparent Conducting F, Al, and Ga Co-Doped ZnO Thin Films with High Photoelectrical Performance. Liu H; Li H; Tao J; Liu J; Yang J; Li J; Song J; Ren J; Wang M; Yang S; Song X; Wang Y ACS Appl Mater Interfaces; 2023 May; 15(18):22195-22203. PubMed ID: 37129068 [TBL] [Abstract][Full Text] [Related]
20. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment. Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]