These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31756222)

  • 1. Perception and control of low cable operation forces in voluntary closing body-powered upper-limb prostheses.
    Hichert M; Abbink DA; Vardy AN; van der Sluis CK; Janssen WGM; Brouwers MAH; Plettenburg DH
    PLoS One; 2019; 14(11):e0225263. PubMed ID: 31756222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-free operation of most body-powered prostheses not feasible for majority of users with trans-radial deficiency.
    Hichert M; Vardy AN; Plettenburg D
    Prosthet Orthot Int; 2018 Feb; 42(1):84-92. PubMed ID: 28621577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ipsilateral Scapular Cutaneous Anchor System: An alternative for the harness in body-powered upper-limb prostheses.
    Hichert M; Plettenburg DH
    Prosthet Orthot Int; 2018 Feb; 42(1):101-106. PubMed ID: 28318402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.
    Hichert M; Abbink DA; Kyberd PJ; Plettenburg DH
    PLoS One; 2017; 12(1):e0169996. PubMed ID: 28099454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.
    LeBlanc M
    Assist Technol; 1990; 2(3):101-7. PubMed ID: 10149042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is body powered operation of upper limb prostheses feasible for young limb deficient children?
    Shaperman J; Leblanc M; Setoguchi Y; McNeal DR
    Prosthet Orthot Int; 1995 Dec; 19(3):165-75. PubMed ID: 8927528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of transradial body-powered prostheses using a robotic simulator.
    Ayub R; Villarreal D; Gregg RD; Gao F
    Prosthet Orthot Int; 2017 Apr; 41(2):194-200. PubMed ID: 27469105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of voluntary opening and voluntary closing prosthetic terminal device.
    Sensinger JW; Lipsey J; Thomas A; Turner K
    J Rehabil Res Dev; 2015; 52(1):63-75. PubMed ID: 26186081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to use a body-powered prosthesis: changes in functionality and kinematics.
    Huinink LH; Bouwsema H; Plettenburg DH; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2016 Oct; 13(1):90. PubMed ID: 27716254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of voluntary closing hand and hook prostheses.
    Smit G; Plettenburg DH
    Prosthet Orthot Int; 2010 Dec; 34(4):411-27. PubMed ID: 20849359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Empirical Evaluation of Force Feedback in Body-Powered Prostheses.
    Brown JD; Kunz TS; Gardner D; Shelley MK; Davis AJ; Gillespie RB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):215-226. PubMed ID: 27101614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical evaluation of the "Hüfner hand" prosthesis.
    Smit G
    Prosthet Orthot Int; 2021 Feb; 45(1):54-61. PubMed ID: 33834745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental apparatus to simulate body-powered prosthetic usage: Development and preliminary evaluation.
    Gao F; Rodriguez J; Kapp S
    Prosthet Orthot Int; 2016 Jun; 40(3):404-8. PubMed ID: 25820641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of body-powered voluntary opening and voluntary closing prehensor for activities of daily life.
    Berning K; Cohick S; Johnson R; Miller LA; Sensinger JW
    J Rehabil Res Dev; 2014; 51(2):253-61. PubMed ID: 24933723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of two different finger concepts for body-powered prosthetic hand.
    Smit G; Plettenburg DH; van der Helm FC
    J Rehabil Res Dev; 2013; 50(9):1253-66. PubMed ID: 24458965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prosthetic use in adult upper limb amputees: a comparison of the body powered and electrically powered prostheses.
    Millstein SG; Heger H; Hunter GA
    Prosthet Orthot Int; 1986 Apr; 10(1):27-34. PubMed ID: 3725563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of above elbow body-powered prostheses in visually guided unconstrained motion tasks.
    Doeringer JA; Hogan N
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):621-31. PubMed ID: 7790019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.