These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31756239)
1. Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus. Benedetto S; Caldato C; Greenwood DC; Bartoli N; Pensabene V; Actis P PLoS One; 2019; 14(11):e0225592. PubMed ID: 31756239 [TBL] [Abstract][Full Text] [Related]
2. Remote photoplethysmography (rPPG) in the wild: Remote heart rate imaging via online webcams. Di Lernia D; Finotti G; Tsakiris M; Riva G; Naber M Behav Res Methods; 2024 Oct; 56(7):6904-6914. PubMed ID: 38632165 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Contactless Heart Rate Monitoring Using Camera with Motion Artifact Removal During Physical Activities. Vatanparvar K; Li J; Gwak M; Zhu L; Kuang J; Gao A Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38082654 [TBL] [Abstract][Full Text] [Related]
4. An open-source remote heart rate imaging method with practical apparatus and algorithms. van der Kooij KM; Naber M Behav Res Methods; 2019 Oct; 51(5):2106-2119. PubMed ID: 31152386 [TBL] [Abstract][Full Text] [Related]
5. Non-invasive methods for heart rate measurement in fish based on photoplethysmography. Deng Y; Hu T; Chen J; Zeng J; Yang J; Ke Q; Miao L; Chen Y; Li R; Zhang R; Xu P J Exp Biol; 2024 Feb; 227(4):. PubMed ID: 38284767 [TBL] [Abstract][Full Text] [Related]
6. Contactless facial video recording with deep learning models for the detection of atrial fibrillation. Sun Y; Yang YY; Wu BJ; Huang PW; Cheng SE; Wu BF; Chen CC Sci Rep; 2022 Jan; 12(1):281. PubMed ID: 34996908 [TBL] [Abstract][Full Text] [Related]
7. Effects of illuminance intensity on the green channel of remote photoplethysmography (rPPG) signals. Guler S; Ozturk O; Golparvar A; Dogan H; Yapici MK Phys Eng Sci Med; 2022 Dec; 45(4):1317-1323. PubMed ID: 36036875 [TBL] [Abstract][Full Text] [Related]
8. Optimal digital filter selection for remote photoplethysmography (rPPG) signal conditioning. Guler S; Golparvar A; Ozturk O; Dogan H; Kaya Yapici M Biomed Phys Eng Express; 2023 Jan; 9(2):. PubMed ID: 36596253 [TBL] [Abstract][Full Text] [Related]
9. New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method. Song R; Zhang S; Cheng J; Li C; Chen X Comput Biol Med; 2020 Jan; 116():103535. PubMed ID: 31760272 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Remote Photoplethysmography Measurement Conditions toward Telemedicine Applications. Tohma A; Nishikawa M; Hashimoto T; Yamazaki Y; Sun G Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960451 [TBL] [Abstract][Full Text] [Related]
11. Validation of Polar OH1 optical heart rate sensor for moderate and high intensity physical activities. Hettiarachchi IT; Hanoun S; Nahavandi D; Nahavandi S PLoS One; 2019; 14(5):e0217288. PubMed ID: 31120968 [TBL] [Abstract][Full Text] [Related]
12. Heart rate estimation from facial photoplethysmography during dynamic illuminance changes. Dongseok Lee ; Jeehoon Kim ; Sungjun Kwon ; Kwangsuk Park Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2758-61. PubMed ID: 26736863 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep. Haghayegh S; Khoshnevis S; Smolensky MH; Diller KR Chronobiol Int; 2019 Jul; 36(7):927-933. PubMed ID: 30990098 [TBL] [Abstract][Full Text] [Related]
14. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation. Haugg F; Elgendi M; Menon C Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829737 [TBL] [Abstract][Full Text] [Related]
15. Camera-based Cardiovascular Screening based on Heart Rate and Its Variability In Pre- and Post-Exercise Conditions. Tan C; Xiao C; Wang W Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083672 [TBL] [Abstract][Full Text] [Related]
16. Non-contact heart rate estimation based on singular spectrum component reconstruction using low-rank matrix and autocorrelation. Wang W; Wei Z; Yuan J; Fang Y; Zheng Y PLoS One; 2022; 17(12):e0275544. PubMed ID: 36584011 [TBL] [Abstract][Full Text] [Related]
17. A deep learning approach to estimate pulse rate by remote photoplethysmography. Lampier LC; Valadão CT; Silva LA; Delisle-Rodríguez D; Caldeira EMO; Bastos-Filho TF Physiol Meas; 2022 Jul; 43(7):. PubMed ID: 35728793 [No Abstract] [Full Text] [Related]
18. Evaluation of video-based rPPG in challenging environments: Artifact mitigation and network resilience. Nguyen N; Nguyen L; Li H; Bordallo López M; Álvarez Casado C Comput Biol Med; 2024 Sep; 179():108873. PubMed ID: 39053334 [TBL] [Abstract][Full Text] [Related]
19. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals. Yu SG; Kim SE; Kim NH; Suh KH; Lee EC Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577448 [TBL] [Abstract][Full Text] [Related]
20. PulseGAN: Learning to Generate Realistic Pulse Waveforms in Remote Photoplethysmography. Song R; Chen H; Cheng J; Li C; Liu Y; Chen X IEEE J Biomed Health Inform; 2021 May; 25(5):1373-1384. PubMed ID: 33434140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]