These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31756339)
1. Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model. Conte M; Gerardo-Giorda L; Groppi M J Theor Biol; 2020 Feb; 486():110088. PubMed ID: 31756339 [TBL] [Abstract][Full Text] [Related]
2. Effective equations for anisotropic glioma spread with proliferation: a multiscale approach and comparisons with previous settings. Engwer C; Hunt A; Surulescu C Math Med Biol; 2016 Dec; 33(4):435-459. PubMed ID: 26363335 [TBL] [Abstract][Full Text] [Related]
3. A stochastic hierarchical model for low grade glioma evolution. Buckwar E; Conte M; Meddah A J Math Biol; 2023 May; 86(6):89. PubMed ID: 37147527 [TBL] [Abstract][Full Text] [Related]
4. A multiscale model for glioma spread including cell-tissue interactions and proliferation. Engwer C; Knappitsch M; Surulescu C Math Biosci Eng; 2016 Apr; 13(2):443-60. PubMed ID: 27105989 [TBL] [Abstract][Full Text] [Related]
5. Modelling microtube driven invasion of glioma. Hillen T; Loy N; Painter KJ; Thiessen R J Math Biol; 2023 Nov; 88(1):4. PubMed ID: 38015257 [TBL] [Abstract][Full Text] [Related]
6. Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion. Painter KJ; Hillen T J Theor Biol; 2013 Apr; 323():25-39. PubMed ID: 23376578 [TBL] [Abstract][Full Text] [Related]
7. A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution. Roniotis A; Marias K; Sakkalis V; Tsibidis GD; Zervakis M Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2807-10. PubMed ID: 19964265 [TBL] [Abstract][Full Text] [Related]
8. Modelling non-local cell-cell adhesion: a multiscale approach. Zhigun A; Rajendran ML J Math Biol; 2024 Apr; 88(5):55. PubMed ID: 38568280 [TBL] [Abstract][Full Text] [Related]
9. Stochastic differential equation modelling of cancer cell migration and tissue invasion. Katsaounis D; Chaplain MAJ; Sfakianakis N J Math Biol; 2023 Jun; 87(1):8. PubMed ID: 37318599 [TBL] [Abstract][Full Text] [Related]
10. Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical cases. Suarez C; Maglietti F; Colonna M; Breitburd K; Marshall G PLoS One; 2012; 7(6):e39616. PubMed ID: 22761843 [TBL] [Abstract][Full Text] [Related]
11. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model. Joshi TV; Avitabile D; Owen MR Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576 [TBL] [Abstract][Full Text] [Related]
12. Mathematical modeling of efficient protocols to control glioma growth. Branco JR; Ferreira JA; de Oliveira P Math Biosci; 2014 Sep; 255():83-90. PubMed ID: 25057777 [TBL] [Abstract][Full Text] [Related]
13. Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images. Yuan J; Liu L Magn Reson Imaging; 2016 Feb; 34(2):114-9. PubMed ID: 26518060 [TBL] [Abstract][Full Text] [Related]
14. Modeling tumor cell migration: From microscopic to macroscopic models. Deroulers C; Aubert M; Badoual M; Grammaticos B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031917. PubMed ID: 19391981 [TBL] [Abstract][Full Text] [Related]
15. The role of myosin II in glioma invasion: A mathematical model. Lee W; Lim S; Kim Y PLoS One; 2017; 12(2):e0171312. PubMed ID: 28166231 [TBL] [Abstract][Full Text] [Related]
16. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Jbabdi S; Mandonnet E; Duffau H; Capelle L; Swanson KR; Pélégrini-Issac M; Guillevin R; Benali H Magn Reson Med; 2005 Sep; 54(3):616-24. PubMed ID: 16088879 [TBL] [Abstract][Full Text] [Related]
17. Multiscale Modeling of Diffusion in a Crowded Environment. Meinecke L Bull Math Biol; 2017 Nov; 79(11):2672-2695. PubMed ID: 28924915 [TBL] [Abstract][Full Text] [Related]
18. A model of cell migration within the extracellular matrix based on a phenotypic switching mechanism. Chauviere A; Preziosi L; Byrne H Math Med Biol; 2010 Sep; 27(3):255-81. PubMed ID: 19942606 [TBL] [Abstract][Full Text] [Related]
19. Spherical deconvolution with tissue-specific response functions and multi-shell diffusion MRI to estimate multiple fiber orientation distributions (mFODs). De Luca A; Guo F; Froeling M; Leemans A Neuroimage; 2020 Nov; 222():117206. PubMed ID: 32745681 [TBL] [Abstract][Full Text] [Related]
20. In-depth analysis and evaluation of diffusive glioma models. Roniotis A; Sakkalis V; Karatzanis I; Zervakis ME; Marias K IEEE Trans Inf Technol Biomed; 2012 May; 16(3):299-307. PubMed ID: 22287245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]