These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 31756358)
1. In silico model-based characterization of metabolic response to harsh sparging stress in fed-batch CHO cell cultures. Hong JK; Yeo HC; Lakshmanan M; Han SH; Cha HM; Han M; Lee DY J Biotechnol; 2020 Jan; 308():10-20. PubMed ID: 31756358 [TBL] [Abstract][Full Text] [Related]
2. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Calmels C; McCann A; Malphettes L; Andersen MR Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251 [TBL] [Abstract][Full Text] [Related]
3. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
4. Exploring metabolic effects of dipeptide feed media on CHO cell cultures by in silico model-guided flux analysis. Park SY; Song J; Choi DH; Park U; Cho H; Hong BH; Silberberg YR; Lee DY Appl Microbiol Biotechnol; 2024 Dec; 108(1):123. PubMed ID: 38229404 [TBL] [Abstract][Full Text] [Related]
5. A Single Dynamic Metabolic Model Can Describe mAb Producing CHO Cell Batch and Fed-Batch Cultures on Different Culture Media. Robitaille J; Chen J; Jolicoeur M PLoS One; 2015; 10(9):e0136815. PubMed ID: 26331955 [TBL] [Abstract][Full Text] [Related]
6. Understanding the effect of temperature downshift on CHO cell growth, antibody titer and product quality by intracellular metabolite profiling and in vivo monitoring of redox state. Zhu Z; Chen X; Li W; Zhuang Y; Zhao Y; Wang G Biotechnol Prog; 2023; 39(4):e3352. PubMed ID: 37141532 [TBL] [Abstract][Full Text] [Related]
7. Metabolomic profiling of CHO fed-batch growth phases at 10, 100, and 1,000 L. Vodopivec M; Lah L; Narat M; Curk T Biotechnol Bioeng; 2019 Oct; 116(10):2720-2729. PubMed ID: 31184374 [TBL] [Abstract][Full Text] [Related]
8. Characterization of cellular responses and cell lysis to elevated hydrodynamic stress from benchtop perfusion bioreactors. Zhang W; Ran Q; Zhao L; Ye Q; Tan WS Biotechnol J; 2024 Mar; 19(3):e2400063. PubMed ID: 38528344 [TBL] [Abstract][Full Text] [Related]
9. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938 [TBL] [Abstract][Full Text] [Related]
10. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
11. Adaptation for survival: phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. Sieck JB; Budach WE; Suemeghy Z; Leist C; Villiger TK; Morbidelli M; Soos M J Biotechnol; 2014 Nov; 189():94-103. PubMed ID: 25218361 [TBL] [Abstract][Full Text] [Related]
12. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Yang WC; Lu J; Kwiatkowski C; Yuan H; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2014; 30(3):616-25. PubMed ID: 24574326 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture. Gomez N; Ambhaikar M; Zhang L; Huang CJ; Barkhordarian H; Lull J; Gutierrez C Biotechnol Prog; 2017 Mar; 33(2):490-499. PubMed ID: 27977914 [TBL] [Abstract][Full Text] [Related]
14. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors. Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626 [TBL] [Abstract][Full Text] [Related]
15. Segmented linear modeling of CHO fed-batch culture and its application to large scale production. Ben Yahia B; Gourevitch B; Malphettes L; Heinzle E Biotechnol Bioeng; 2017 Apr; 114(4):785-797. PubMed ID: 27869296 [TBL] [Abstract][Full Text] [Related]
16. Debottlenecking and reformulating feed media for improved CHO cell growth and titer by data-driven and model-guided analyses. Park SY; Choi DH; Song J; Park U; Cho H; Hong BH; Silberberg YR; Lee DY Biotechnol J; 2023 Dec; 18(12):e2300126. PubMed ID: 37605365 [TBL] [Abstract][Full Text] [Related]
17. A framework for the systematic design of fed-batch strategies in mammalian cell culture. Kyriakopoulos S; Kontoravdi C Biotechnol Bioeng; 2014 Dec; 111(12):2466-76. PubMed ID: 24975682 [TBL] [Abstract][Full Text] [Related]
18. A genome-scale nutrient minimization forecast algorithm for controlling essential amino acid levels in CHO cell cultures. Chen Y; Liu X; Anderson JYL; Naik HM; Dhara VG; Chen X; Harris GA; Betenbaugh MJ Biotechnol Bioeng; 2022 Feb; 119(2):435-451. PubMed ID: 34811743 [TBL] [Abstract][Full Text] [Related]
19. Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Selvarasu S; Ho YS; Chong WP; Wong NS; Yusufi FN; Lee YY; Yap MG; Lee DY Biotechnol Bioeng; 2012 Jun; 109(6):1415-29. PubMed ID: 22252269 [TBL] [Abstract][Full Text] [Related]
20. Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid. Mun M; Khoo S; Do Minh A; Dvornicky J; Trexler-Schmidt M; Kao YH; Laird MW Biotechnol Bioeng; 2015 Apr; 112(4):734-42. PubMed ID: 25384896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]