BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 31756363)

  • 21. New drugs in therapy of colorectal cancer: preclinical studies.
    Rustum YM; Cao S
    Semin Oncol; 1999 Dec; 26(6):612-20. PubMed ID: 10606254
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting a novel miR-519c-HuR-ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer.
    To KK; Leung WW; Ng SS
    Exp Cell Res; 2015 Nov; 338(2):222-31. PubMed ID: 26386386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miR-139-5p sensitizes colorectal cancer cells to 5-fluorouracil by targeting NOTCH-1.
    Liu H; Yin Y; Hu Y; Feng Y; Bian Z; Yao S; Li M; You Q; Huang Z
    Pathol Res Pract; 2016 Jul; 212(7):643-9. PubMed ID: 27173050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy.
    De Mattia E; Cecchin E; Toffoli G
    Drug Resist Updat; 2015 May; 20():39-70. PubMed ID: 26027741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroRNA-552 deficiency mediates 5-fluorouracil resistance by targeting SMAD2 signaling in DNA-mismatch-repair-deficient colorectal cancer.
    Zhao P; Ma YG; Zhao Y; Liu D; Dai ZJ; Yan CY; Guan HT
    Cancer Chemother Pharmacol; 2019 Aug; 84(2):427-439. PubMed ID: 31087138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AQP9-induced cell cycle arrest is associated with RAS activation and improves chemotherapy treatment efficacy in colorectal cancer.
    Huang D; Feng X; Liu Y; Deng Y; Chen H; Chen D; Fang L; Cai Y; Liu H; Wang L; Wang J; Yang Z
    Cell Death Dis; 2017 Jun; 8(6):e2894. PubMed ID: 28640255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudolaric acid B induces mitotic arrest and apoptosis in both 5-fluorouracil-sensitive and -resistant colorectal cancer cells.
    Wen C; Chen J; Zhang D; Wang H; Che J; Qin Q; He L; Cai Z; Lin M; Lou Q; Huang L; Chen D; Iwamoto A; Ren D; Wang L; Lan P; Wang J; Liu H; Yang X
    Cancer Lett; 2016 Dec; 383(2):295-308. PubMed ID: 27713084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FoxO3 reverses 5-fluorouracil resistance in human colorectal cancer cells by inhibiting the Nrf2/TR1 signaling pathway.
    Liu C; Zhao Y; Wang J; Yang Y; Zhang Y; Qu X; Peng S; Yao Z; Zhao S; He B; Mi Q; Zhu Y; Liu X; Zou J; Zhang X; Du Q
    Cancer Lett; 2020 Feb; 470():29-42. PubMed ID: 31811910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Practical considerations in the use of oral fluoropyrimidines.
    Hoff PM
    Semin Oncol; 2003 Jun; 30(3 Suppl 6):88-92. PubMed ID: 12802799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNA-149 Increases the Sensitivity of Colorectal Cancer Cells to 5-Fluorouracil by Targeting Forkhead Box Transcription Factor FOXM1.
    Liu X; Xie T; Mao X; Xue L; Chu X; Chen L
    Cell Physiol Biochem; 2016; 39(2):617-29. PubMed ID: 27415661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capecitabine: effective oral fluoropyrimidine chemotherapy.
    McKendrick J; Coutsouvelis J
    Expert Opin Pharmacother; 2005 Jun; 6(7):1231-9. PubMed ID: 15957975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer.
    Tappenden P; Jones R; Paisley S; Carroll C
    Health Technol Assess; 2007 Mar; 11(12):1-128, iii-iv. PubMed ID: 17346499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic antitumor activity of 5-fluorouracil and atosiban against microsatellite stable colorectal cancer through restoring GATA3.
    Wang M; Guo X; Yang M; Zhang Y; Meng F; Chen Y; Chen M; Qiu T; Li J; Li Z; Zhang Q; Xu F; Zhang H; Wang W
    Biochem Pharmacol; 2022 May; 199():115025. PubMed ID: 35367196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oral fluoropoyrimidines.
    Hoff PM; Royce M; Medgyesy D; Brito R; Pazdur R
    Semin Oncol; 1999 Dec; 26(6):640-6. PubMed ID: 10606257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional signatures for coupled predictions of stage II and III colorectal cancer metastasis and fluorouracil-based adjuvant chemotherapy benefit.
    Song K; Guo Y; Wang X; Cai H; Zheng W; Li N; Song X; Ao L; Guo Z; Zhao W
    FASEB J; 2019 Jan; 33(1):151-162. PubMed ID: 29957060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleoside diphosphate kinase 2 confers acquired 5-fluorouracil resistance in colorectal cancer cells.
    Wen S; Wang X; Wang Y; Shen J; Pu J; Liang H; Chen C; Liu L; Dai P
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):896-905. PubMed ID: 29475390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Systemic treatment of colorectal cancers--factual standards and perspectives].
    Miron L
    Rev Med Chir Soc Med Nat Iasi; 2003; 107(4):752-8. PubMed ID: 14756014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quinacrine-Mediated Inhibition of Nrf2 Reverses Hypoxia-Induced 5-Fluorouracil Resistance in Colorectal Cancer.
    Kim HG; Kim CW; Lee DH; Lee JS; Oh ET; Park HJ
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31491980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thymidylate synthase inhibitors in cancer therapy: direct and indirect inhibitors.
    Rustum YM; Harstrick A; Cao S; Vanhoefer U; Yin MB; Wilke H; Seeber S
    J Clin Oncol; 1997 Jan; 15(1):389-400. PubMed ID: 8996166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevated microRNA-23a Expression Enhances the Chemoresistance of Colorectal Cancer Cells with Microsatellite Instability to 5-Fluorouracil by Directly Targeting ABCF1.
    Li X; Li X; Liao D; Wang X; Wu Z; Nie J; Bai M; Fu X; Mei Q; Han W
    Curr Protein Pept Sci; 2015; 16(4):301-9. PubMed ID: 25929864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.