These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31756457)

  • 1. Structural features of split and unsplit βαβ-units.
    Kargatov AM
    J Struct Biol; 2020 Jan; 209(1):107427. PubMed ID: 31756457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strained N-capping motif in α-helices of βαβ-units.
    Kargatov AM
    J Struct Biol; 2024 Mar; 216(1):108063. PubMed ID: 38246580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Unique Combinations of βαβ-Units and Π-Like Modules in Proteins and Specific Features of Their Amino Acid Sequences].
    Kargatov AM; Efimov AV
    Mol Biol (Mosk); 2018; 52(1):43-50. PubMed ID: 29512635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. βαβ Super-Secondary Motifs: Sequence, Structural Overview, and Pursuit of Potential Autonomously Folding βαβ Sequences from (β/α)
    Kadamuri RV; Irukuvajjula SS; Vadrevu R
    Methods Mol Biol; 2019; 1958():221-236. PubMed ID: 30945221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural motifs in which β-strands are clipped together with the П-like module.
    Efimov AV
    Proteins; 2017 Oct; 85(10):1925-1930. PubMed ID: 28677205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D interaction homology: The hydropathic interaction environments of even alanine are diverse and provide novel structural insight.
    Ahmed MH; Catalano C; Portillo SC; Safo MK; Neel Scarsdale J; Kellogg GE
    J Struct Biol; 2019 Aug; 207(2):183-198. PubMed ID: 31112746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization.
    Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y
    J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting alpha-helices: position-specific analysis of alpha-helices in globular proteins.
    Kumar S; Bansal M
    Proteins; 1998 Jun; 31(4):460-76. PubMed ID: 9626705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent alpha beta loop structures in TIM barrel motifs show a distinct pattern of conserved structural features.
    Scheerlinck JP; Lasters I; Claessens M; De Maeyer M; Pio F; Delhaise P; Wodak SJ
    Proteins; 1992 Apr; 12(4):299-313. PubMed ID: 1374562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid content of beta strands and alpha helices depends on their flanking secondary structure elements.
    Khrustalev VV; Khrustaleva TA; Poboinev VV
    Biosystems; 2018 Jun; 168():45-54. PubMed ID: 29742459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in the amino acid distributions of 3(10)-helices and alpha-helices.
    Karpen ME; de Haseth PL; Neet KE
    Protein Sci; 1992 Oct; 1(10):1333-42. PubMed ID: 1303752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variants of 3(10)-helices in proteins.
    Pal L; Basu G; Chakrabarti P
    Proteins; 2002 Aug; 48(3):571-9. PubMed ID: 12112680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification.
    Simm S; Einloft J; Mirus O; Schleiff E
    Biol Res; 2016 Jul; 49(1):31. PubMed ID: 27378087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residues in the longitudinal, hydrophobic strip-of-helix relate to terminations and crossings of alpha-helices.
    Vazquez SR; Kuo DZ; Bositis CM; Hardy LW; Lew RA; Humphreys RE
    J Biol Chem; 1992 Apr; 267(11):7406-10. PubMed ID: 1313798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional analyses of PolyProline-II helices in globular proteins.
    Kumar P; Bansal M
    J Struct Biol; 2016 Dec; 196(3):414-425. PubMed ID: 27637571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of alpha-helices in proteins with the hydrophobic strip-of-helix template and distributions of other amino acids around the hydrophobic strip.
    Vazquez SR; Kuo DZ; Salomon M; Hardy L; Lew RA; Humphreys RE
    Arch Biochem Biophys; 1993 Sep; 305(2):448-53. PubMed ID: 8373182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirality and Handedness of Protein Structures.
    Efimov AV
    Biochemistry (Mosc); 2018 Jan; 83(Suppl 1):S103-S110. PubMed ID: 29544434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable proline box motif at the N-terminal end of alpha-helices.
    Viguera AR; Serrano L
    Protein Sci; 1999 Sep; 8(9):1733-42. PubMed ID: 10493574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold.
    Kadumuri RV; Vadrevu R
    Interdiscip Sci; 2018 Dec; 10(4):805-812. PubMed ID: 29064074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.