BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31756465)

  • 1. Penicillium camemberti galacturonate reductase: C-1 oxidation/reduction of uronic acids and substrate inhibition mitigation by aldonic acids.
    Wagschal K; Jordan DB; Hart-Cooper WM; Chan VJ
    Int J Biol Macromol; 2020 Jun; 153():1090-1098. PubMed ID: 31756465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentative production of l-galactonate by using recombinant Saccharomyces cerevisiae containing the endogenous galacturonate reductase gene from Cryptococcus diffluens.
    Matsubara T; Hamada S; Wakabayashi A; Kishida M
    J Biosci Bioeng; 2016 Nov; 122(5):639-644. PubMed ID: 27259388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.
    Ishikawa T; Nishikawa H; Gao Y; Sawa Y; Shibata H; Yabuta Y; Maruta T; Shigeoka S
    J Biol Chem; 2008 Nov; 283(45):31133-41. PubMed ID: 18782759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aldohexuronic acid catabolism by a soil Aeromonas.
    Farmer JJ; Eagon RG
    J Bacteriol; 1969 Jan; 97(1):97-106. PubMed ID: 4388117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L-ascorbic acid biosynthesis in higher plants from L-gulono-1, 4-lactone and L-galactono-1, 4-lactone.
    Baig MM; Kelly S; Loewus F
    Plant Physiol; 1970 Aug; 46(2):277-80. PubMed ID: 5481396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of D-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis.
    Ishikawa T; Masumoto I; Iwasa N; Nishikawa H; Sawa Y; Shibata H; Nakamura A; Yabuta Y; Shigeoka S
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2720-6. PubMed ID: 17090924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biosynthetic pathway of L-ascorbic acid in Euglena gracilis Z.
    Shigeoka S; Nakano Y; Kitaoka S
    J Nutr Sci Vitaminol (Tokyo); 1979; 25(4):299-307. PubMed ID: 118242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of D-galacturonate reductase purified from the psychrophilic yeast species Cryptococcus diffluens.
    Hamada S; Seike Y; Tanimori S; Sakamoto T; Kishida M
    J Biosci Bioeng; 2011 May; 111(5):518-21. PubMed ID: 21388872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The missing link in the fungal D-galacturonate pathway: identification of the L-threo-3-deoxy-hexulosonate aldolase.
    Hilditch S; Berghäll S; Kalkkinen N; Penttilä M; Richard P
    J Biol Chem; 2007 Sep; 282(36):26195-201. PubMed ID: 17609199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The D-galacturonic acid catabolic pathway in Botrytis cinerea.
    Zhang L; Thiewes H; van Kan JA
    Fungal Genet Biol; 2011 Oct; 48(10):990-7. PubMed ID: 21683149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress on the characterization of aldonolactone oxidoreductases.
    Aboobucker SI; Lorence A
    Plant Physiol Biochem; 2016 Jan; 98():171-85. PubMed ID: 26696130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering cofactor supply and NADH-dependent D-galacturonic acid reductases for redox-balanced production of L-galactonate in Saccharomyces cerevisiae.
    Harth S; Wagner J; Sens T; Choe JY; Benz JP; Weuster-Botz D; Oreb M
    Sci Rep; 2020 Nov; 10(1):19021. PubMed ID: 33149263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconversion of D-galacturonate to keto-deoxy-L-galactonate (3-deoxy-L-threo-hex-2-ulosonate) using filamentous fungi.
    Wiebe MG; Mojzita D; Hilditch S; Ruohonen L; Penttilä M
    BMC Biotechnol; 2010 Aug; 10():63. PubMed ID: 20796274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish.
    Xu Y; Zhu X; Chen Y; Gong Y; Liu L
    Plant Physiol Biochem; 2013 Sep; 70():269-77. PubMed ID: 23800662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of fungal strains for conversion of D-galacturonate to meso-galactarate.
    Mojzita D; Wiebe M; Hilditch S; Boer H; Penttilä M; Richard P
    Appl Environ Microbiol; 2010 Jan; 76(1):169-75. PubMed ID: 19897761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Two
    Aboobucker SI; Suza WP; Lorence A
    React Oxyg Species (Apex); 2017 Nov; 4(12):389-417. PubMed ID: 30112455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization and enzyme inhibition studies of NADP+- farnesol dehydrogenase from diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).
    Zifruddin AN; Mohamad-Khalid KA; Suhaimi SA; Mohamed-Hussein ZA; Hassan M
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1628-1638. PubMed ID: 33890631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-ascorbic acid biosynthesis.
    Smirnoff N
    Vitam Horm; 2001; 61():241-66. PubMed ID: 11153268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification in Agrobacterium tumefaciens of the D-galacturonic acid dehydrogenase gene.
    Boer H; Maaheimo H; Koivula A; Penttilä M; Richard P
    Appl Microbiol Biotechnol; 2010 Apr; 86(3):901-9. PubMed ID: 19921179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.