These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
748 related articles for article (PubMed ID: 31756634)
1. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634 [TBL] [Abstract][Full Text] [Related]
2. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. Cui E; Li Z; Ma C; Li Q; Lei Y; Lan Y; Yu J; Zhou Z; Li R; Long W; Lin F Eur Radiol; 2020 May; 30(5):2912-2921. PubMed ID: 32002635 [TBL] [Abstract][Full Text] [Related]
3. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Shu J; Tang Y; Cui J; Yang R; Meng X; Cai Z; Zhang J; Xu W; Wen D; Yin H Eur J Radiol; 2018 Dec; 109():8-12. PubMed ID: 30527316 [TBL] [Abstract][Full Text] [Related]
4. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Lin F; Cui EM; Lei Y; Luo LP Abdom Radiol (NY); 2019 Jul; 44(7):2528-2534. PubMed ID: 30919041 [TBL] [Abstract][Full Text] [Related]
5. Multiphase comparative study for WHO/ISUP nuclear grading diagnostic model based on enhanced CT images of clear cell renal cell carcinoma. Lu C; Xia Y; Han J; Chen W; Qiao X; Gao R; Jiang X Sci Rep; 2024 May; 14(1):12043. PubMed ID: 38802547 [TBL] [Abstract][Full Text] [Related]
7. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
8. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
9. Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study. Haji-Momenian S; Lin Z; Patel B; Law N; Michalak A; Nayak A; Earls J; Loew M Abdom Radiol (NY); 2020 Mar; 45(3):789-798. PubMed ID: 31822969 [TBL] [Abstract][Full Text] [Related]
10. Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images. Sun X; Liu L; Xu K; Li W; Huo Z; Liu H; Shen T; Pan F; Jiang Y; Zhang M Medicine (Baltimore); 2019 Apr; 98(14):e15022. PubMed ID: 30946334 [TBL] [Abstract][Full Text] [Related]
11. Incremental value of automatically segmented perirenal adipose tissue for pathological grading of clear cell renal cell carcinoma: a multicenter cohort study. Li S; Zhou Z; Gao M; Liao Z; He K; Qu W; Li J; Kamel IR; Chu Q; Zhang Q; Li Z Int J Surg; 2024 Jul; 110(7):4221-4230. PubMed ID: 38573065 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Kocak B; Durmaz ES; Kaya OK; Kilickesmez O Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476 [TBL] [Abstract][Full Text] [Related]
14. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300 [TBL] [Abstract][Full Text] [Related]
15. Grading of Clear Cell Renal Cell Carcinomas by Using Machine Learning Based on Artificial Neural Networks and Radiomic Signatures Extracted From Multidetector Computed Tomography Images. He X; Wei Y; Zhang H; Zhang T; Yuan F; Huang Z; Han F; Song B Acad Radiol; 2020 Feb; 27(2):157-168. PubMed ID: 31147235 [TBL] [Abstract][Full Text] [Related]
16. A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma. Yang L; Gao L; Arefan D; Tan Y; Dan H; Zhang J BMC Med Imaging; 2022 Jan; 22(1):15. PubMed ID: 35094674 [TBL] [Abstract][Full Text] [Related]
17. Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence of volume of interest delineation strategies on machine learning-based dynamic enhanced CT radiomics analysis. Luo S; Wei R; Lu S; Lai S; Wu J; Wu Z; Pang X; Wei X; Jiang X; Zhen X; Yang R Eur Radiol; 2022 Apr; 32(4):2340-2350. PubMed ID: 34636962 [TBL] [Abstract][Full Text] [Related]
18. Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study. Xv Y; Lv F; Guo H; Zhou X; Tan H; Xiao M; Zheng Y Insights Imaging; 2021 Nov; 12(1):170. PubMed ID: 34800179 [TBL] [Abstract][Full Text] [Related]
19. Prediction models for clear cell renal cell carcinoma ISUP/WHO grade: comparison between CT radiomics and conventional contrast-enhanced CT. Han D; Yu Y; Yu N; Dang S; Wu H; Jialiang R; He T Br J Radiol; 2020 Oct; 93(1114):20200131. PubMed ID: 32706977 [TBL] [Abstract][Full Text] [Related]