These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31756711)

  • 1. Comparison between optical coherence tomography imaging and histological sections of peripheral nerves.
    Carolus AE; Möller J; Hofmann MR; van de Nes JAP; Welp H; Schmieder K; Brenke C
    J Neurosurg; 2019 Nov; 134(1):270-277. PubMed ID: 31756711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution in vivo imaging of peripheral nerves using optical coherence tomography: a feasibility study.
    Carolus AE; Lenz M; Hofmann M; Welp H; Schmieder K; Brenke C
    J Neurosurg; 2019 Apr; 132(6):1907-1913. PubMed ID: 31026830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved
    Saytashev I; Yoon YC; Vakoc BJ; Vasudevan S; Hammer DX
    J Biomed Opt; 2023 Feb; 28(2):026002. PubMed ID: 36785561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential phases of RGC axonal and somatic injury in EAE mice examined using DTI and OCT.
    Nishioka C; Liang HF; Barsamian B; Sun SW
    Mult Scler Relat Disord; 2019 Jan; 27():315-323. PubMed ID: 30469023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of line-field confocal optical coherence tomography images with histological sections: Validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness.
    Pedrazzani M; Breugnot J; Rouaud-Tinguely P; Cazalas M; Davis A; Bordes S; Dubois A; Closs B
    Skin Res Technol; 2020 May; 26(3):398-404. PubMed ID: 31799766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible-Light Optical Coherence Tomography Fibergraphy for Quantitative Imaging of Retinal Ganglion Cell Axon Bundles.
    Miller DA; Grannonico M; Liu M; Kuranov RV; Netland PA; Liu X; Zhang HF
    Transl Vis Sci Technol; 2020 Oct; 9(11):11. PubMed ID: 33110707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal Optical Coherence Tomography for Intraoperative Evaluation of Tumor Margins and Surgical Margins in Breast-Conserving Surgery.
    Vorontsov DA; Gubarkova EV; Sirotkina MA; Sovetsky AA; Plekhanov AA; Kuznetsov SS; Davydova DA; Bogomolova AY; Zaitsev VY; Gamayunov SV; Vorontsov AY; Sobolevskiy VA; Gladkova ND
    Sovrem Tekhnologii Med; 2022; 14(2):26-38. PubMed ID: 37065422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traumatic neuroma in continuity injury model in rodents: a preliminary report.
    Alant J; Kemp S; Webb A; Midha R
    Evid Based Spine Care J; 2010 Aug; 1(2):52-5. PubMed ID: 23637668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review.
    Adabi S; Turani Z; Fatemizadeh E; Clayton A; Nasiriavanaki M
    Biomed Eng Comput Biol; 2017; 8():1179597217713475. PubMed ID: 28638245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time subglottic stenosis imaging using optical coherence tomography in the rabbit.
    Lin JL; Yau AY; Boyd J; Hamamoto A; Su E; Tracy L; Heidari AE; Wang AH; Ahuja G; Chen Z; Wong BJ
    JAMA Otolaryngol Head Neck Surg; 2013 May; 139(5):502-9. PubMed ID: 23681033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of human brain tumor tissue by near-infrared laser coherence tomography.
    Böhringer HJ; Lankenau E; Stellmacher F; Reusche E; Hüttmann G; Giese A
    Acta Neurochir (Wien); 2009 May; 151(5):507-17; discussion 517. PubMed ID: 19343270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blockface histology with optical coherence tomography: a comparison with Nissl staining.
    Magnain C; Augustinack JC; Reuter M; Wachinger C; Frosch MP; Ragan T; Akkin T; Wedeen VJ; Boas DA; Fischl B
    Neuroimage; 2014 Jan; 84():524-33. PubMed ID: 24041872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of Optical Coherence Tomography Images for Breast Tissue Assessment.
    Yemul KS; Zysk AM; Richardson AL; Tangella KV; Jacobs LK
    Surg Innov; 2019 Feb; 26(1):50-56. PubMed ID: 30295149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography.
    Fischer MD; Huber G; Beck SC; Tanimoto N; Muehlfriedel R; Fahl E; Grimm C; Wenzel A; Remé CE; van de Pavert SA; Wijnholds J; Pacal M; Bremner R; Seeliger MW
    PLoS One; 2009 Oct; 4(10):e7507. PubMed ID: 19838301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of methods to mitigate artifacts in optical coherence tomography imaging of the skin.
    Adabi S; Fotouhi A; Xu Q; Daveluy S; Mehregan D; Podoleanu A; Nasiriavanaki M
    Skin Res Technol; 2018 May; 24(2):265-273. PubMed ID: 29143429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-dependent attenuation and backscattering characterization of optical coherence tomography by stationary iterative method.
    Wang Y; Wei S; Kang JU
    J Biomed Opt; 2023 Aug; 28(8):085002. PubMed ID: 37638109
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.