These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31756820)

  • 1. Aerobic cometabolism of 1,4-dioxane by isobutane-utilizing microorganisms including Rhodococcus rhodochrous strain 21198 in aquifer microcosms: Experimental and modeling study.
    Rolston HM; Hyman MR; Semprini L
    Sci Total Environ; 2019 Dec; 694():133688. PubMed ID: 31756820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-well push-pull tests evaluating isobutane as a primary substrate for promoting in situ cometabolic biotransformation reactions.
    Rolston H; Hyman M; Semprini L
    Biodegradation; 2022 Aug; 33(4):349-371. PubMed ID: 35553282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaugmentation of butane-utilizing microorganisms to promote cometabolism of 1,1,1-trichloroethane in groundwater microcosms.
    Jitnuyanont P; Sayavedra-Soto LA; Semprini L
    Biodegradation; 2001; 12(1):11-22. PubMed ID: 11693291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term cometabolic transformation of 1,1,1-trichloroethane and 1,4-dioxane by Rhodococcus rhodochrous ATCC 21198 grown on alcohols slowly produced by orthosilicates.
    Murnane RA; Chen W; Hyman M; Semprini L
    J Contam Hydrol; 2021 Jun; 240():103796. PubMed ID: 33765462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions.
    Barajas-Rodriguez FJ; Freedman DL
    J Hazard Mater; 2018 May; 350():180-188. PubMed ID: 29477886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB; Banerjee R; Rezes R; Streger SH; McClay K; Schaefer CE
    Biodegradation; 2017 Dec; 28(5-6):453-468. PubMed ID: 29022194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of biostimulation and bioaugmentation on biodegradation of high concentrations of 1,4-dioxane.
    Ramos-García ÁA; Walecka-Hutchison C; Freedman DL
    Biodegradation; 2022 Apr; 33(2):157-168. PubMed ID: 35102492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,4-Dioxane biodegradation at low temperatures in Arctic groundwater samples.
    Li M; Fiorenza S; Chatham JR; Mahendra S; Alvarez PJ
    Water Res; 2010 May; 44(9):2894-900. PubMed ID: 20199795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-encapsulation of slow release compounds and Rhodococcus rhodochrous ATCC 21198 in gellan gum beads to promote the long-term aerobic cometabolic transformation of 1,1,1-trichloroethane, cis-1,2-dichloroethene and 1,4-dioxane.
    Rasmussen MT; Saito AM; Hyman MR; Semprini L
    Environ Sci Process Impacts; 2020 Mar; 22(3):771-791. PubMed ID: 32083262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S; Wang B; Chu KH
    Sci Total Environ; 2015 Jul; 520():154-9. PubMed ID: 25813968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of ethylene dibromide (1,2-dibromoethane [EDB]) in microcosms simulating in situ and biostimulated conditions.
    McKeever R; Sheppard D; Nüsslein K; Baek KH; Rieber K; Ergas SJ; Forbes R; Hilyard M; Park C
    J Hazard Mater; 2012 Mar; 209-210():92-8. PubMed ID: 22301079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the intrinsic bioremediation potential of 1,4-dioxane and trichloroethene using innovative environmental diagnostic tools.
    Chiang SY; Mora R; Diguiseppi WH; Davis G; Sublette K; Gedalanga P; Mahendra S
    J Environ Monit; 2012 Sep; 14(9):2317-26. PubMed ID: 22825917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents.
    Frascari D; Bucchi G; Doria F; Rosato A; Tavanaie N; Salviulo R; Ciavarelli R; Pinelli D; Fraraccio S; Zanaroli G; Fava F
    Biodegradation; 2014 Jun; 25(3):337-50. PubMed ID: 24096531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The need for bioaugmentation after thermal treatment of a TCE-contaminated aquifer: Laboratory experiments.
    Friis AK; Albrechtsen HJ; Cox E; Bjerg PL
    J Contam Hydrol; 2006 Dec; 88(3-4):235-48. PubMed ID: 17081651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bioaugmentation on enhanced reductive dechlorination of 1,1,1-trichloroethane in groundwater: a comparison of three sites.
    Scheutz C; Durant ND; Broholm MM
    Biodegradation; 2014 Jun; 25(3):459-78. PubMed ID: 24233554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 May; 104(9):4155-4170. PubMed ID: 32170385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
    Mahendra S; Grostern A; Alvarez-Cohen L
    Chemosphere; 2013 Mar; 91(1):88-92. PubMed ID: 23237300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2255-2269. PubMed ID: 31956944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1,1,1-trichloroethane and 1,1-dichloroethene.
    Semprini L; Dolan ME; Hopkins GD; McCarty PL
    J Contam Hydrol; 2009 Jan; 103(3-4):157-67. PubMed ID: 19022526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.