These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31756824)

  • 1. Increasing nitrogen export to sea: A scenario analysis for the Indus River.
    Wang M; Tang T; Burek P; Havlík P; Krisztin T; Kroeze C; Leclère D; Strokal M; Wada Y; Wang Y; Langan S
    Sci Total Environ; 2019 Dec; 694():133629. PubMed ID: 31756824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China.
    Strokal M; Kroeze C; Wang M; Bai Z; Ma L
    Sci Total Environ; 2016 Aug; 562():869-888. PubMed ID: 27115624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess nutrient loads to Lake Taihu: Opportunities for nutrient reduction.
    Wang M; Strokal M; Burek P; Kroeze C; Ma L; Janssen ABG
    Sci Total Environ; 2019 May; 664():865-873. PubMed ID: 30769310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of nitrogen in reservoirs of the Haihe basin (China) 2012-2017.
    Yang J; Liu X; Strokal M; Kroeze C; Hao P; Bai Z; Ma L
    J Environ Manage; 2023 Nov; 345():118667. PubMed ID: 37515883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios.
    Strokal M; Kroeze C; Wang M; Ma L
    Sci Total Environ; 2017 Feb; 579():517-528. PubMed ID: 27884528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equality in river pollution control in China.
    Li A; Yuan Q; Strokal M; Kroeze C; Ma L; Liu Y
    Sci Total Environ; 2021 Jul; 777():146105. PubMed ID: 33677299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing future nutrient inputs to the Black Sea.
    Strokal MP; Kroeze C; Kopilevych VA; Voytenko LV
    Sci Total Environ; 2014 Jan; 466-467():253-64. PubMed ID: 23906857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing seasonal nitrogen export to large tropical lakes.
    Goshu G; Strokal M; Kroeze C; Koelmans AA; de Klein JJM
    Sci Total Environ; 2020 Aug; 731():139199. PubMed ID: 32417484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The increasing impact of food production on nutrient export by rivers to the Bay of Bengal 1970-2050.
    Sattar A; Kroeze C; Strokal M
    Mar Pollut Bull; 2014 Mar; 80(1-2):168-78. PubMed ID: 24467860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient inputs and hydrology together determine biogeochemical status of the Loire River (France): Current situation and possible future scenarios.
    Garnier J; Ramarson A; Billen G; Théry S; Thiéry D; Thieu V; Minaudo C; Moatar F
    Sci Total Environ; 2018 Oct; 637-638():609-624. PubMed ID: 29758418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Past and future trends in nutrients export by rivers to the coastal waters of China.
    Qu HJ; Kroeze C
    Sci Total Environ; 2010 Apr; 408(9):2075-86. PubMed ID: 20096444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea.
    Liu X; Beusen AHW; Van Beek LPH; Mogollón JM; Ran X; Bouwman AF
    Water Res; 2018 Oct; 142():246-255. PubMed ID: 29890473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coastal eutrophication in Europe caused by production of energy crops.
    van Wijnen J; Ivens WP; Kroeze C; Löhr AJ
    Sci Total Environ; 2015 Apr; 511():101-11. PubMed ID: 25536176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to avoid coastal eutrophication - a back-casting study for the North China Plain.
    Li A; Strokal M; Bai Z; Kroeze C; Ma L
    Sci Total Environ; 2019 Nov; 692():676-690. PubMed ID: 31539976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling increased riverine nitrogen export: Source tracking and integrated watershed-coast management.
    Yu D; Yan W; Chen N; Peng B; Hong H; Zhuo G
    Mar Pollut Bull; 2015 Dec; 101(2):642-52. PubMed ID: 26517942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying and estimating the sources of river flow in the cold arid desert environment of Upper Indus River Basin (UIRB), western Himalayas.
    Lone SA; Jeelani G; Padhya V; Deshpande RD
    Sci Total Environ; 2022 Aug; 832():154964. PubMed ID: 35367560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water quality management could halve future water scarcity cost-effectively in the Pearl River Basin.
    Baccour S; Goelema G; Kahil T; Albiac J; van Vliet MTH; Zhu X; Strokal M
    Nat Commun; 2024 Jul; 15(1):5669. PubMed ID: 38971836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Future riverine nitrogen export to coastal regions in the United States: prospects for improving water quality.
    McCrackin ML; Harrison JA; Compton JE
    J Environ Qual; 2015 Mar; 44(2):345-55. PubMed ID: 26023954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causes of coastal waters pollution with nutrients, chemicals and plastics worldwide.
    Micella I; Kroeze C; Bak MP; Strokal M
    Mar Pollut Bull; 2024 Jan; 198():115902. PubMed ID: 38101060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.