These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31757128)

  • 1. Unraveling the role of zinc complexes on indium phosphide nanocrystal chemistry.
    McVey BFP; Swain RA; Lagarde D; Tison Y; Martinez H; Chaudret B; Nayral C; Delpech F
    J Chem Phys; 2019 Nov; 151(19):191102. PubMed ID: 31757128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc Carboxylate Surface Passivation for Enhanced Optical Properties of In(Zn)P Colloidal Quantum Dots.
    Yoo D; Bak E; Ju HM; Shin YM; Choi MJ
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Surface Chemistry on the Photophysics of Colloidal InP Nanocrystals.
    Hughes KE; Stein JL; Friedfeld MR; Cossairt BM; Gamelin DR
    ACS Nano; 2019 Dec; 13(12):14198-14207. PubMed ID: 31730352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.
    Xi L; Cho DY; Besmehn A; Duchamp M; Grützmacher D; Lam YM; Kardynał BE
    Inorg Chem; 2016 Sep; 55(17):8381-6. PubMed ID: 27551948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals.
    Li H; Jia C; Meng X; Li H
    Front Chem; 2018; 6():652. PubMed ID: 30671431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of Zn during the phosphine-based synthesis of indium phospide quantum dots: doping and surface passivation.
    Mordvinova NE; Vinokurov AA; Lebedev OI; Kuznetsova TA; Dorofeev SG
    Beilstein J Nanotechnol; 2015; 6():1237-46. PubMed ID: 26114082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals.
    Gresback R; Hue R; Gladfelter WL; Kortshagen UR
    Nanoscale Res Lett; 2011 Jan; 6(1):68. PubMed ID: 21711589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Zn
    Friedfeld MR; Stein JL; Johnson DA; Park N; Henry NA; Enright MJ; Mocatta D; Cossairt BM
    J Chem Phys; 2019 Nov; 151(19):194702. PubMed ID: 31757130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the role of single molecular ZnS precursors in the synthesis of In(Zn)P/ZnS nanocrystals.
    Xi L; Cho DY; Duchamp M; Boothroyd CB; Lek JY; Besmehn A; Waser R; Lam YM; Kardynal B
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18233-42. PubMed ID: 25252171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescent Anisotropic Wurtzite InP Nanocrystals.
    Stone D; Koley S; Remennik S; Asor L; Panfil YE; Naor T; Banin U
    Nano Lett; 2021 Dec; 21(23):10032-10039. PubMed ID: 34807613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity.
    Choi Y; Hahm D; Bae WK; Lim J
    Nat Commun; 2023 Jan; 14(1):43. PubMed ID: 36596807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D molecular structural modeling and characterization of indium phosphide via irregularity topological indices.
    Salman M; Ullah A; Zaman S; Mahmoud EE; Belay MB
    BMC Chem; 2024 May; 18(1):101. PubMed ID: 38755696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites.
    Nedeljković JM; Mićić OI; Ahrenkiel SP; Miedaner A; Nozik AJ
    J Am Chem Soc; 2004 Mar; 126(8):2632-9. PubMed ID: 14982473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.
    Patzke GR; Kontic R; Shiolashvili Z; Makhatadze N; Jishiashvili D
    Materials (Basel); 2012 Dec; 6(1):85-100. PubMed ID: 28809296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.
    Laufersky G; Bradley S; Frécaut E; Lein M; Nann T
    Nanoscale; 2018 May; 10(18):8752-8762. PubMed ID: 29708260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide.
    Yu S; Xie Z; Ran M; Wu F; Zhong Y; Dan M; Zhou Y
    J Colloid Interface Sci; 2020 Aug; 573():71-77. PubMed ID: 32272299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indium Phosphide-Based Quantum Dots with Shell-Enhanced Absorption for Luminescent Down-Conversion.
    Dupont D; Tessier MD; Smet PF; Hens Z
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28582592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters.
    Xie R; Peng X
    J Am Chem Soc; 2009 Aug; 131(30):10645-51. PubMed ID: 19588970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface chemistry of InP quantum dots: a comprehensive study.
    Cros-Gagneux A; Delpech F; Nayral C; Cornejo A; Coppel Y; Chaudret B
    J Am Chem Soc; 2010 Dec; 132(51):18147-57. PubMed ID: 21126088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Luminescent Shell-Less Indium Phosphide Quantum Dots Enabled by Atomistically Tailored Surface States.
    Gwak N; Shin S; Yoo H; Seo GW; Kim S; Jang H; Lee M; Park TH; Kim BJ; Lim J; Kim SY; Kim S; Hwang GW; Oh N
    Adv Mater; 2024 Jul; ():e2404480. PubMed ID: 39016602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.