These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31757135)
1. Hierarchical quantum master equation approach to vibronic reaction dynamics at metal surfaces. Erpenbeck A; Thoss M J Chem Phys; 2019 Nov; 151(19):191101. PubMed ID: 31757135 [TBL] [Abstract][Full Text] [Related]
2. Nonadiabatic dynamics of molecules interacting with metal surfaces: A quantum-classical approach based on Langevin dynamics and the hierarchical equations of motion. Rudge SL; Kaspar C; Grether RL; Wolf S; Stock G; Thoss M J Chem Phys; 2024 May; 160(18):. PubMed ID: 38716846 [TBL] [Abstract][Full Text] [Related]
3. Excited electronic states and nonadiabatic effects in contemporary chemical dynamics. Mahapatra S Acc Chem Res; 2009 Aug; 42(8):1004-15. PubMed ID: 19456094 [TBL] [Abstract][Full Text] [Related]
4. Memory effects in nonadiabatic molecular dynamics at metal surfaces. Olsen T; Schiøtz J J Chem Phys; 2010 Oct; 133(13):134109. PubMed ID: 20942525 [TBL] [Abstract][Full Text] [Related]
5. Nonadiabatic Molecular Dynamics at Metal Surfaces. Dou W; Subotnik JE J Phys Chem A; 2020 Feb; 124(5):757-771. PubMed ID: 31916769 [TBL] [Abstract][Full Text] [Related]
6. Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections. Ryabinkin IG; Joubert-Doriol L; Izmaylov AF Acc Chem Res; 2017 Jul; 50(7):1785-1793. PubMed ID: 28665584 [TBL] [Abstract][Full Text] [Related]
7. Nonadiabatic dynamics of molecules interacting with metal surfaces: Extending the hierarchical equations of motion and Langevin dynamics approach to position-dependent metal-molecule couplings. Mäck M; Thoss M; Rudge SL J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39132787 [TBL] [Abstract][Full Text] [Related]
11. A broadened classical master equation approach for nonadiabatic dynamics at metal surfaces: Beyond the weak molecule-metal coupling limit. Dou W; Subotnik JE J Chem Phys; 2016 Jan; 144(2):024116. PubMed ID: 26772563 [TBL] [Abstract][Full Text] [Related]
12. Spin-vibronic quantum dynamics for ultrafast excited-state processes. Eng J; Gourlaouen C; Gindensperger E; Daniel C Acc Chem Res; 2015 Mar; 48(3):809-17. PubMed ID: 25647179 [TBL] [Abstract][Full Text] [Related]
13. Electronic circular dichroism in exciton-coupled dimers: vibronic spectra from a general all-coordinates quantum-dynamical approach. Padula D; Picconi D; Lami A; Pescitelli G; Santoro F J Phys Chem A; 2013 Apr; 117(16):3355-68. PubMed ID: 23527703 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of nonadiabatic hydrogen atom scattering dynamics on metal surfaces using the hierarchical equations of motion method. Dan X; Shi Q J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37486050 [TBL] [Abstract][Full Text] [Related]
15. Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. Jin J; Zheng X; Yan Y J Chem Phys; 2008 Jun; 128(23):234703. PubMed ID: 18570515 [TBL] [Abstract][Full Text] [Related]
17. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces. Gardner J; Habershon S; Maurer RJ J Phys Chem C Nanomater Interfaces; 2023 Aug; 127(31):15257-15270. PubMed ID: 37583439 [TBL] [Abstract][Full Text] [Related]
18. Effective-mode representation of non-Markovian dynamics: a hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics. Hughes KH; Christ CD; Burghardt I J Chem Phys; 2009 Sep; 131(12):124108. PubMed ID: 19791853 [TBL] [Abstract][Full Text] [Related]
19. A Generalized Surface Hopping Algorithm To Model Nonadiabatic Dynamics near Metal Surfaces: The Case of Multiple Electronic Orbitals. Dou W; Subotnik JE J Chem Theory Comput; 2017 Jun; 13(6):2430-2439. PubMed ID: 28467702 [TBL] [Abstract][Full Text] [Related]
20. Current-induced bond rupture in single-molecule junctions: Effects of multiple electronic states and vibrational modes. Ke Y; Dvořák J; Čížek M; Borrelli R; Thoss M J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]